These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36033624)

  • 21. Spiking neural networks fine-tuning for brain image segmentation.
    Yue Y; Baltes M; Abuhajar N; Sun T; Karanth A; Smith CD; Bihl T; Liu J
    Front Neurosci; 2023; 17():1267639. PubMed ID: 38027484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems.
    Guo W; Fouda ME; Yantir HE; Eltawil AM; Salama KN
    Front Neurosci; 2020; 14():598876. PubMed ID: 33281549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification.
    Ju X; Fang B; Yan R; Xu X; Tang H
    Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SNN-BERT: Training-efficient Spiking Neural Networks for energy-efficient BERT.
    Su Q; Mei S; Xing X; Yao M; Zhang J; Xu B; Li G
    Neural Netw; 2024 Dec; 180():106630. PubMed ID: 39208467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.
    Chen R; Li L
    Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-DRAM Cache Management for Low Latency and Low Power 3D-Stacked DRAMs.
    Shin HH; Chung EY
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning.
    Kim D; Chakraborty B; She X; Lee E; Kang B; Mukhopadhyay S
    Front Neurosci; 2022; 16():775457. PubMed ID: 35478844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks.
    Nallathambi A; Sen S; Raghunathan A; Chandrachoodan N
    Front Neurosci; 2021; 15():694402. PubMed ID: 34335168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A low cost neuromorphic learning engine based on a high performance supervised SNN learning algorithm.
    Siddique A; Vai MI; Pun SH
    Sci Rep; 2023 Apr; 13(1):6280. PubMed ID: 37072443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FangTianSim: High-Level Cycle-Accurate Resistive Random-Access Memory-Based Multi-Core Spiking Neural Network Processor Simulator.
    Wei J; Wang Z; Li Y; Lu J; Jiang H; An J; Li Y; Gao L; Zhang X; Shi T; Liu Q
    Front Neurosci; 2021; 15():806325. PubMed ID: 35126046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning.
    Srinivasan G; Roy K
    Front Neurosci; 2021; 15():603433. PubMed ID: 34776834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trainable quantization for Speedy Spiking Neural Networks.
    Castagnetti A; Pegatoquet A; Miramond B
    Front Neurosci; 2023; 17():1154241. PubMed ID: 36937675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.