BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36033867)

  • 1. Overexpression of enzymes in glycolysis and energy metabolic pathways to enhance coenzyme Q10 production in
    Zhang L; Li YL; Hu JH; Liu ZY
    Front Microbiol; 2022; 13():931470. PubMed ID: 36033867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-production of farnesol and coenzyme Q
    Chen X; Jiang X; Xu M; Zhang M; Huang R; Huang J; Qi F
    Microb Cell Fact; 2019 May; 18(1):98. PubMed ID: 31151455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q
    Zhu Y; Ye L; Chen Z; Hu W; Shi Y; Chen J; Wang C; Li Y; Li W; Yu H
    Enzyme Microb Technol; 2017 Jun; 101():36-43. PubMed ID: 28433189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux analysis of coenzyme Q
    Xiao Y; Zheng Y; Zhou Y; Yu C; Ye TE
    Microb Cell Fact; 2023 Oct; 22(1):206. PubMed ID: 37817171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative mutagenesis induced by atmospheric and room temperature plasma treatment under multiple selection pressures for the improvement of coenzyme Q10 production by Rhodobacter sphaeroides.
    Wang Y; Chen S; Huo K; Wang B; Liu J; Zhao G; Liu J
    FEMS Microbiol Lett; 2022 Jan; 368(21-24):. PubMed ID: 34875071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate limitation increases coenzyme Q
    Zhang L; Liu L; Wang KF; Xu L; Zhou L; Wang W; Li C; Xu Z; Shi T; Chen H; Li Y; Xu H; Yang X; Zhu Z; Chen B; Li D; Zhan G; Zhang SL; Zhang LX; Tan GY
    Synth Syst Biotechnol; 2019 Dec; 4(4):212-219. PubMed ID: 31890925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10.
    Zou RS; Li S; Zhang LL; Zhang C; Han YJ; Gao G; Sun X; Gong X
    J Biosci Bioeng; 2019 Jun; 127(6):698-702. PubMed ID: 30709705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of NADPH availability for coproduction of coenzyme Q
    Xu M; Wu H; Shen P; Jiang X; Chen X; Lin J; Huang J; Qi F
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):263-274. PubMed ID: 31993848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supplementing
    Bae GS; Choi A; Yeo JM; Kim JN; Song J; Kim EJ; Chang MB
    Asian-Australas J Anim Sci; 2018 Jan; 31(1):40-46. PubMed ID: 28427254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced CoQ10 production by genome modification of Rhodobacter sphaeroides via Tn7 transposition.
    Zhu Y; Pan M; Wang C; Ye L; Xia C; Yu H
    FEMS Microbiol Lett; 2022 Mar; 369(1):. PubMed ID: 35218188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.
    Lu W; Ye L; Lv X; Xie W; Gu J; Chen Z; Zhu Y; Li A; Yu H
    Metab Eng; 2015 May; 29():208-216. PubMed ID: 25817210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.
    Lu W; Ye L; Xu H; Xie W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Apr; 111(4):761-9. PubMed ID: 24122603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving CoQ
    Yang Y; Li L; Sun H; Li Z; Qi Z; Liu X
    Microb Cell Fact; 2021 Oct; 20(1):207. PubMed ID: 34717624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of coenzyme Q
    Wang Y; Chen S; Liu J; Lv P; Cai D; Zhao G
    RSC Adv; 2019 Jul; 9(39):22336-22342. PubMed ID: 35519485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture.
    Tong X; Oh EK; Lee BH; Lee JK
    Microb Cell Fact; 2019 Jan; 18(1):20. PubMed ID: 30704481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Production of coenzyme Q10 by metabolically engineered Escherichia coli].
    Dai G; Miao L; Sun T; Li Q; Xiao D; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):206-19. PubMed ID: 26062342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 18. Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in
    Shi T; Zhang L; Liang M; Wang W; Wang K; Jiang Y; Liu J; He X; Yang Z; Chen H; Li C; Lv D; Zhou L; Chen B; Li D; Zhang LX; Tan GY
    Synth Syst Biotechnol; 2021 Dec; 6(4):335-342. PubMed ID: 34738044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
    Mutuku JM; Nose A
    Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reevaluation of the "glycolytic complex" in muscle: a multitechnique approach using trout white muscle.
    Brooks SP; Storey KB
    Arch Biochem Biophys; 1988 Nov; 267(1):13-22. PubMed ID: 2973767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.