These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36034658)

  • 1. Facile synthesis of nanosized Mn
    Wang H; Zhao J; Xie D; Huang H; Rao P; Mao J
    Front Chem; 2022; 10():990548. PubMed ID: 36034658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries.
    Ko YN; Park SB; Choi SH; Kang YC
    Sci Rep; 2014 Aug; 4():5751. PubMed ID: 25168839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Mn
    Tang C; Xiong F; Yao X; Tan S; Lan B; An Q; Luo P; Mai L
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14120-14125. PubMed ID: 30908002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Bake-in-Salt Method for the Synthesis of Mesoporous Mn
    Sun Y; Jiao R; Zuo X; Tang R; Su H; Xu D; Sun D; Zeng S; Zhang X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35163-35171. PubMed ID: 27977117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flame spray pyrolysis for finding multicomponent nanomaterials with superior electrochemical properties in the CoO(x)-FeO(x) system for use in lithium-ion batteries.
    Kim JH; Lee JH; Kang YC
    Chem Asian J; 2014 Oct; 9(10):2826-30. PubMed ID: 25065898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Solution Synthesis of Red Phosphorus Nanoparticles for Lithium Ion Battery Anodes.
    Wang F; Zi W; Zhao BX; Du HB
    Nanoscale Res Lett; 2018 Nov; 13(1):356. PubMed ID: 30411163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Li4Ti5O12 yolk-shell powders by spray pyrolysis and their electrochemical properties.
    Yang KM; Ko YN; Yun JY; Kang YC
    Chem Asian J; 2014 Feb; 9(2):443-6. PubMed ID: 24282098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Scale Process for Low Crystalline MoO₃-Carbon Composite Microspheres Prepared by One-Step Spray Pyrolysis for Anodes in Lithium-Ion Batteries.
    Cho JS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yolk-shell, hollow, and single-crystalline ZnCo(2)O(4) powders: preparation using a simple one-pot process and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2013 Nov; 6(11):2111-6. PubMed ID: 23908071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Hoberman Sphere Design for Interlaced Mn
    Mao W; Yue W; Xu Z; Wang J; Zhang J; Li D; Zhang B; Yang S; Dai K; Liu G; Ai G
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39282-39292. PubMed ID: 32805903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greatly Enhanced Faradic Capacities of 3D Porous Mn
    Li S; Yu LL; Shi YT; Fan J; Li RB; Fan GD; Xu WL; Zhao JT
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10178-10188. PubMed ID: 30768243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties.
    Choi SH; Kang YC
    Chemistry; 2014 Mar; 20(11):3014-8. PubMed ID: 24532417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage.
    Wu L; Huang S; Dong W; Li Y; Wang Z; Mohamed HSH; Li Y; Su BL
    J Colloid Interface Sci; 2021 Jul; 594():531-539. PubMed ID: 33774409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical construction of three-dimensional porous Mn3O4 nanosheet arrays as an anode for the lithium ion battery.
    Fan XY; Cui Y; Liu P; Gou L; Xu L; Li DL
    Phys Chem Chem Phys; 2016 Aug; 18(32):22224-34. PubMed ID: 27452235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries.
    Park GD; Ko YN; Kang YC
    Sci Rep; 2014 Aug; 4():5785. PubMed ID: 25167884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iron oxyborate Fe
    Ping Q; Xu B; Ma X; Tian J; Wang B
    Dalton Trans; 2019 Apr; 48(17):5741-5748. PubMed ID: 30973167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Li₂Ti₃O₇ Anode Materials by Ultrasonic Spray Pyrolysis and Their Electrochemical Properties.
    Ogihara T; Kodera T
    Materials (Basel); 2013 Jun; 6(6):2285-2294. PubMed ID: 28809274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.