These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36035470)

  • 1. Genetic analysis of cryptochrome in insect magnetosensitivity.
    Kyriacou CP; Rosato E
    Front Physiol; 2022; 13():928416. PubMed ID: 36035470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential elements of radical pair magnetosensitivity in Drosophila.
    Bradlaugh AA; Fedele G; Munro AL; Hansen CN; Hares JM; Patel S; Kyriacou CP; Jones AR; Rosato E; Baines RA
    Nature; 2023 Mar; 615(7950):111-116. PubMed ID: 36813962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway.
    Fedele G; Green EW; Rosato E; Kyriacou CP
    Nat Commun; 2014 Jul; 5():4391. PubMed ID: 25019586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
    Yoshii T; Ahmad M; Helfrich-Förster C
    PLoS Biol; 2009 Apr; 7(4):e1000086. PubMed ID: 19355790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals.
    Deviers J; Cailliez F; de la Lande A; Kattnig DR
    J Chem Phys; 2022 Jan; 156(2):025101. PubMed ID: 35032990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
    Gegear RJ; Casselman A; Waddell S; Reppert SM
    Nature; 2008 Aug; 454(7207):1014-8. PubMed ID: 18641630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
    Hammad M; Albaqami M; Pooam M; Kernevez E; Witczak J; Ritz T; Martino C; Ahmad M
    Photochem Photobiol Sci; 2020 Mar; 19(3):341-352. PubMed ID: 32065192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster.
    Fedele G; Edwards MD; Bhutani S; Hares JM; Murbach M; Green EW; Dissel S; Hastings MH; Rosato E; Kyriacou CP
    PLoS Genet; 2014 Dec; 10(12):e1004804. PubMed ID: 25473952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance.
    Solov'yov IA; Domratcheva T; Schulten K
    Sci Rep; 2014 Jan; 4():3845. PubMed ID: 24457842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen.
    van Wilderen LJ; Silkstone G; Mason M; van Thor JJ; Wilson MT
    FEBS Open Bio; 2015; 5():885-92. PubMed ID: 26649273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
    Solov'yov IA; Chandler DE; Schulten K
    Biophys J; 2007 Apr; 92(8):2711-26. PubMed ID: 17259272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inter-radical interactions and scavenging radicals on magnetosensitivity: spin dynamics simulations of proposed radical pairs.
    Hong G; Pachter R
    Eur Biophys J; 2023 Feb; 52(1-2):27-37. PubMed ID: 36792823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers.
    Kattnig DR; Hore PJ
    Sci Rep; 2017 Sep; 7(1):11640. PubMed ID: 28912470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.