BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 36035664)

  • 1. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of
    Wu J; Peng SF; Jiang FG; Tang J; Sun H
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2449-2457. PubMed ID: 34313063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of tree crown parameters of high-density pure
    Li R; Sun Z; Xie YH; Li HW; Zhang YG; Sun YJ
    Ying Yong Sheng Tai Xue Bao; 2023 Apr; 34(4):1024-1034. PubMed ID: 37078322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model.
    Yang B; Zhu Y; Zhou S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees.
    Raman MG; Carlos EF; Sankaran S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tree parameter extraction in
    Jiang Z; Chen J; Tang LY; Yu C; Xie RG; Huang DL; Su SD
    Ying Yong Sheng Tai Xue Bao; 2024 Feb; 35(2):321-329. PubMed ID: 38523088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UAV Photogrammetry for Estimating Stand Parameters of an Old Japanese Larch Plantation Using Different Filtering Methods at Two Flight Altitudes.
    Karthigesu J; Owari T; Tsuyuki S; Hiroshima T
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image.
    Ma Y; Ma L; Zhang Q; Huang C; Yi X; Chen X; Hou T; Lv X; Zhang Z
    Front Plant Sci; 2022; 13():925986. PubMed ID: 35783985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone.
    Holiaka D; Kato H; Yoschenko V; Onda Y; Igarashi Y; Nanba K; Diachuk P; Holiaka M; Zadorozhniuk R; Kashparov V; Chyzhevskyi I
    J Environ Manage; 2021 Oct; 295():113319. PubMed ID: 34348433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individualization of
    Cabrera-Ariza AM; Lara-Gómez MA; Santelices-Moya RE; Meroño de Larriva JE; Mesas-Carrascosa FJ
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable identification and mapping of trees using UAV RGB image and deep learning.
    Onishi M; Ise T
    Sci Rep; 2021 Jan; 11(1):903. PubMed ID: 33441689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring post-fire neighborhood competition effects on pine saplings under different environmental conditions by means of UAV multispectral data and structure-from-motion photogrammetry.
    Fernández-Guisuraga JM; Calvo L; Suárez-Seoane S
    J Environ Manage; 2022 Mar; 305():114373. PubMed ID: 34954682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of peach tree crown by using high-resolution images from an unmanned aerial vehicle.
    Mu Y; Fujii Y; Takata D; Zheng B; Noshita K; Honda K; Ninomiya S; Guo W
    Hortic Res; 2018; 5():74. PubMed ID: 30564372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN.
    Safonova A; Guirado E; Maglinets Y; Alcaraz-Segura D; Tabik S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Tree Crown Segmentation and Crown Width Extraction From a Heightmap Derived From Aerial Laser Scanning Data Using a Deep Learning Framework.
    Sun C; Huang C; Zhang H; Chen B; An F; Wang L; Yun T
    Front Plant Sci; 2022; 13():914974. PubMed ID: 35774816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.