BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36035791)

  • 1. A microcarrier-based protocol for scalable generation and purification of human induced pluripotent stem cell-derived neurons and astrocytes.
    Knittel J; Srinivasan G; Frisch C; Brookhouser N; Raman S; Essuman A; Brafman DA
    STAR Protoc; 2022 Sep; 3(3):101632. PubMed ID: 36035791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Tri-culture of hiPSC-Derived Neurons, Astrocytes, and Microglia.
    Ryan SK; Jordan-Sciutto KL; Anderson SA
    STAR Protoc; 2020 Dec; 1(3):100190. PubMed ID: 33377084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to differentiate monolayer human induced pluripotent stem cells into inflammatory responsive astrocytes.
    Giordano AMS; Abou Alezz M; Merelli I; Kajaste-Rudnitski A
    STAR Protoc; 2023 Mar; 4(1):102142. PubMed ID: 36881505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of functional astrocytes from human-induced pluripotent stem cells in chemically defined media.
    Perriot S; Canales M; Mathias A; Du Pasquier R
    STAR Protoc; 2021 Dec; 2(4):100902. PubMed ID: 34746863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of inflammation-responsive astrocytes from glial progenitors derived from human pluripotent stem cells.
    Santos R; Mei A; Marchetto MC
    STAR Protoc; 2022 Jun; 3(2):101261. PubMed ID: 35313707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducible and scalable differentiation of highly pure cortical neurons from human induced pluripotent stem cells.
    Dannert A; Klimmt J; Cardoso Gonçalves C; Crusius D; Paquet D
    STAR Protoc; 2023 May; 4(2):102266. PubMed ID: 37148244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Human CD49f
    Barbar L; Rusielewicz T; Zimmer M; Kalpana K; Fossati V
    STAR Protoc; 2020 Dec; 1(3):100172. PubMed ID: 33377066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized protocol for the generation of functional human induced-pluripotent-stem-cell-derived dopaminergic neurons.
    Sheta R; Teixeira M; Idi W; Oueslati A
    STAR Protoc; 2023 Sep; 4(3):102486. PubMed ID: 37515763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of cardiomyocytes and neurons derived from human pluripotent stem cells by inhibition of
    Tanosaki S; Akiyama T; Kanaami S; Fujita J; Ko MSH; Fukuda K; Tohyama S
    STAR Protoc; 2022 Jun; 3(2):101360. PubMed ID: 35516845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of highly pure motor neurons from human induced pluripotent stem cells.
    Akter M; Cui H; Sepehrimanesh M; Hosain MA; Ding B
    STAR Protoc; 2022 Mar; 3(1):101223. PubMed ID: 35300000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for differentiation of functional macrophages from human induced pluripotent stem cells.
    Jeong S; Chang H; Hong SH
    STAR Protoc; 2024 Mar; 5(1):102925. PubMed ID: 38421862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-content analysis of neuronal morphology in human iPSC-derived neurons.
    Lickfett S; Menacho C; Zink A; Telugu NS; Beller M; Diecke S; Cambridge S; Prigione A
    STAR Protoc; 2022 Sep; 3(3):101567. PubMed ID: 35990743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple protocol to produce mature human-induced pluripotent stem cell-derived cardiomyocytes.
    Knight WE; Cao Y; Dillon P; Song K
    STAR Protoc; 2021 Dec; 2(4):100912. PubMed ID: 34755117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of beta-like cells from human induced pluripotent stem cell-derived pancreatic progenitor organoids.
    Pedraza-Arevalo S; Cujba AM; Alvarez-Fallas ME; Sancho R
    STAR Protoc; 2022 Sep; 3(3):101656. PubMed ID: 36092820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro.
    Calvo-Garrido J; Winn D; Maffezzini C; Wedell A; Freyer C; Falk A; Wredenberg A
    STAR Protoc; 2021 Jun; 2(2):100528. PubMed ID: 34027486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
    Bardy J; Chen AK; Lim YM; Wu S; Wei S; Weiping H; Chan K; Reuveny S; Oh SK
    Tissue Eng Part C Methods; 2013 Feb; 19(2):166-80. PubMed ID: 22834957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocyte-enriched feeder layers from cryopreserved cells support differentiation of spontaneously active networks of human iPSC-derived neurons.
    Schutte RJ; Xie Y; Ng NN; Figueroa P; Pham AT; O'Dowd DK
    J Neurosci Methods; 2018 Jan; 294():91-101. PubMed ID: 28746822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of an Electrophysiological Platform for Modeling ALS with Regionally-Specific Human Pluripotent Stem Cell-Derived Astrocytes and Neurons.
    Taga A; Habela CW; Johns A; Liu S; O'Brien M; Maragakis NJ
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34515684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protocol for rapid pericyte differentiation of human induced pluripotent stem cells.
    Aisenbrey EA; Torr E; Johnson H; Soref C; Daly W; Murphy WL
    STAR Protoc; 2021 Mar; 2(1):100261. PubMed ID: 33490977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and enrichment of cerebellar GABAergic interneurons from human induced pluripotent stem cells and intracellular calcium measurements.
    Pilotto F; Diab R; Al Qassab Z; Saxena S
    STAR Protoc; 2024 Jun; 5(2):102936. PubMed ID: 38735042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.