BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36036204)

  • 1. Analysis of contributory factors of fatal pedestrian crashes by mixed logit model and association rules.
    Rella Riccardi M; Mauriello F; Scarano A; Montella A
    Int J Inj Contr Saf Promot; 2023 Jun; 30(2):195-209. PubMed ID: 36036204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of child pedestrian crash outcomes in Ghana.
    Adanu EK; Dzinyela R; Agyemang W
    Accid Anal Prev; 2023 Sep; 189():107146. PubMed ID: 37285755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling pedestrian injury severity in pedestrian-vehicle crashes considering different land use patterns: Mixed logit approach.
    Yang T; Fan WD; Song L
    Traffic Inj Prev; 2023; 24(2):114-120. PubMed ID: 36662669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of factors influencing walking-along-the-road pedestrian injury severity outcomes under different lighting conditions: A random parameters logit approach with heterogeneity in means and out-of-sample predictions.
    Tamakloe R; Adanu EK; Atandzi J; Das S; Lord D; Park D
    Accid Anal Prev; 2023 Dec; 193():107333. PubMed ID: 37832357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed logit approach to analyzing pedestrian injury severity in pedestrian-vehicle crashes in North Carolina: Considering time-of-day and day-of-week.
    Song L; Li Y; Fan WD; Liu P
    Traffic Inj Prev; 2021; 22(7):524-529. PubMed ID: 34264779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the factors contribute to the injury severities of vulnerable roadway user involved crashes.
    Dong C; Khattak AJ; Shao C; Xie K
    Int J Inj Contr Saf Promot; 2019 Sep; 26(3):302-314. PubMed ID: 31169068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the leading causes of fatal and severe injury crashes involving older pedestrian? Evidence from Bayesian network model.
    Lalika L; Kitali AE; Haule HJ; Kidando E; Sando T; Alluri P
    J Safety Res; 2022 Feb; 80():281-292. PubMed ID: 35249608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injury severity prediction of cyclist crashes using random forests and random parameters logit models.
    Scarano A; Rella Riccardi M; Mauriello F; D'Agostino C; Pasquino N; Montella A
    Accid Anal Prev; 2023 Nov; 192():107275. PubMed ID: 37683568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring nighttime pedestrian crash patterns at intersection and segments: Findings from the machine learning algorithm.
    Hossain A; Sun X; Shahrier M; Islam S; Alam S
    J Safety Res; 2023 Dec; 87():382-394. PubMed ID: 38081711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating pedestrian-vehicle crashes on interstate highways: Applying random parameter binary logit model with heterogeneity in means.
    Hossain A; Sun X; Das S; Jafari M; Rahman A
    Accid Anal Prev; 2024 May; 199():107503. PubMed ID: 38368777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using ordered and unordered logistic regressions to investigate risk factors associated with pedestrian crash injury severity in Victoria, Australia.
    Nasri M; Aghabayk K; Esmaili A; Shiwakoti N
    J Safety Res; 2022 Jun; 81():78-90. PubMed ID: 35589308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating risk factors associated with pedestrian crash occurrence and injury severity in Texas.
    Rahman M; Kockelman KM; Perrine KA
    Traffic Inj Prev; 2022; 23(5):283-289. PubMed ID: 35584352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Severity of road crashes involving pedestrians in Metro Manila, Philippines.
    Verzosa N; Miles R
    Accid Anal Prev; 2016 Sep; 94():216-26. PubMed ID: 27340839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the driver-victim pairs in pedestrian and bicyclist crashes by latent class clustering and random forest algorithm.
    Zhu C; Brown CT; Dadashova B; Ye X; Sohrabi S; Potts I
    Accid Anal Prev; 2023 Mar; 182():106964. PubMed ID: 36638723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population-based case-control study of the effect of sun glare on pedestrian fatalities in Taiwan.
    Ma HP; Chen PL; Chen SK; Chen LH; Linkov V; Pai CW
    BMJ Open; 2019 Aug; 9(8):e028350. PubMed ID: 31462468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An examination of the increases in pedestrian motor-vehicle crash fatalities during 2009-2016.
    Hu W; Cicchino JB
    J Safety Res; 2018 Dec; 67():37-44. PubMed ID: 30553428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data.
    Mahdinia I; Khattak AJ; Mohsena Haque A
    Accid Anal Prev; 2022 Jun; 171():106669. PubMed ID: 35427907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors explaining pedestrian-involved fatality crashes on National Highways in India.
    Mehdi Naqvi H; Tiwari G
    Int J Inj Contr Saf Promot; 2022 Sep; 29(3):321-330. PubMed ID: 35723040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatal pedestrian crashes at intersections: Trend mining using association rules.
    Das S; Tamakloe R; Zubaidi H; Obaid I; Alnedawi A
    Accid Anal Prev; 2021 Sep; 160():106306. PubMed ID: 34303494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing pedestrian crash injury severity at signalized and non-signalized locations.
    Haleem K; Alluri P; Gan A
    Accid Anal Prev; 2015 Aug; 81():14-23. PubMed ID: 25935426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.