These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Regulation of the DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase by inositol and growth phase. Inhibition of DGPP phosphatase activity by CDP-diacylglyceron and activation of phosphatidylserine synthase activity by DGPP. Oshiro J; Rangaswamy S; Chen X; Han GS; Quinn JE; Carman GM J Biol Chem; 2000 Dec; 275(52):40887-96. PubMed ID: 11016943 [TBL] [Abstract][Full Text] [Related]
44. Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. Delhaize E; Hebb DM; Richards KD; Lin JM; Ryan PR; Gardner RC J Biol Chem; 1999 Mar; 274(11):7082-8. PubMed ID: 10066765 [TBL] [Abstract][Full Text] [Related]
45. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Thammahong A; Puttikamonkul S; Perfect JR; Brennan RG; Cramer RA Microbiol Mol Biol Rev; 2017 Jun; 81(2):. PubMed ID: 28298477 [TBL] [Abstract][Full Text] [Related]
46. A Peptide from Budding Yeast GAPDH Serves as a Promising Antifungal against Cryptococcus neoformans. Zhang Y; Zhou L; Liu Y; Zhao X; Lian X; Zhang J; Zhao D; Wang Y; Zhong J; Wang J; Wang H; Wang L; Fu YV Microbiol Spectr; 2022 Feb; 10(1):e0082621. PubMed ID: 35019693 [TBL] [Abstract][Full Text] [Related]
47. Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast. Soto-Cardalda A; Fakas S; Pascual F; Choi HS; Carman GM J Biol Chem; 2012 Jan; 287(2):968-77. PubMed ID: 22128164 [TBL] [Abstract][Full Text] [Related]
48. Adenylyl-Sulfate Kinase (Met14)-Dependent Cysteine and Methionine Biosynthesis Pathways Contribute Distinctively to Pathobiological Processes in Cryptococcus neoformans. Lee SH; Jang YB; Choi Y; Lee Y; Shin BN; Lee HS; Lee JS; Bahn YS Microbiol Spectr; 2023 Jun; 11(3):e0068523. PubMed ID: 37036370 [TBL] [Abstract][Full Text] [Related]
49. Isolation of the yeast structural gene for the membrane-associated enzyme phosphatidylserine synthase. Letts VA; Klig LS; Bae-Lee M; Carman GM; Henry SA Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7279-83. PubMed ID: 6316353 [TBL] [Abstract][Full Text] [Related]
50. Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae. Bürgermeister M; Birner-Grünberger R; Nebauer R; Daum G Biochim Biophys Acta; 2004 Nov; 1686(1-2):161-8. PubMed ID: 15522832 [TBL] [Abstract][Full Text] [Related]
51. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. Ianiri G; Idnurm A mBio; 2015 Mar; 6(2):. PubMed ID: 25827419 [TBL] [Abstract][Full Text] [Related]
52. Phosphatidylethanolamine is not essential for growth of Sinorhizobium meliloti on complex culture media. Sohlenkamp C; de Rudder KE; Geiger O J Bacteriol; 2004 Mar; 186(6):1667-77. PubMed ID: 14996797 [TBL] [Abstract][Full Text] [Related]
53. Influence of phosphatidylserine and phosphatidylethanolamine on farnesol tolerance in Candida albicans. Hasim S; Vaughn EN; Donohoe D; Gordon DM; Pfiffner S; Reynolds TB Yeast; 2018 Apr; 35(4):343-351. PubMed ID: 29143357 [TBL] [Abstract][Full Text] [Related]
54. Control of phosphatidylethanolamine metabolism in yeast: diacylglycerol ethanolaminephosphotransferase and diacylglycerol cholinephosphotransferase are separate enzymes. Percy AK; Carson MA; Moore JF; Waechter CJ Arch Biochem Biophys; 1984 Apr; 230(1):69-81. PubMed ID: 6324684 [TBL] [Abstract][Full Text] [Related]
55. Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Gaigg B; Simbeni R; Hrastnik C; Paltauf F; Daum G Biochim Biophys Acta; 1995 Mar; 1234(2):214-20. PubMed ID: 7696296 [TBL] [Abstract][Full Text] [Related]
56. Development of Antifungal Peptides against Cryptococcus neoformans; Leveraging Knowledge about the Tancer RJ; Wang Y; Pawar S; Xue C; Wiedman GR Microbiol Spectr; 2022 Apr; 10(2):e0043922. PubMed ID: 35377230 [TBL] [Abstract][Full Text] [Related]
57. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Ju S; Greenberg ML Mol Microbiol; 2003 Sep; 49(6):1595-603. PubMed ID: 12950923 [TBL] [Abstract][Full Text] [Related]
58. Reconstitution of Saccharomyces cerevisiae phosphatidylserine synthase into phospholipid vesicles. Modulation of activity by phospholipids. Hromy JM; Carman GM J Biol Chem; 1986 Nov; 261(33):15572-6. PubMed ID: 3023323 [TBL] [Abstract][Full Text] [Related]
59. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Ganendren R; Widmer F; Singhal V; Wilson C; Sorrell T; Wright L Antimicrob Agents Chemother; 2004 May; 48(5):1561-9. PubMed ID: 15105106 [TBL] [Abstract][Full Text] [Related]
60. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. Wambaugh MA; Denham ST; Ayala M; Brammer B; Stonhill MA; Brown JC Elife; 2020 May; 9():. PubMed ID: 32367801 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]