These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Surface Design Strategy of Catalysts for Water Electrolysis. Zhou B; Gao R; Zou JJ; Yang H Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595 [TBL] [Abstract][Full Text] [Related]
24. 3D Printed Nickel-Molybdenum-Based Electrocatalysts for Hydrogen Evolution at Low Overpotentials in a Flow-Through Configuration. Sullivan I; Zhang H; Zhu C; Wood M; Nelson AJ; Baker SE; Spadaccini CM; Van Buuren T; Lin M; Duoss EB; Liang S; Xiang C ACS Appl Mater Interfaces; 2021 May; 13(17):20260-20268. PubMed ID: 33886258 [TBL] [Abstract][Full Text] [Related]
25. Double Perovskite Cobaltites Integrated in a Monolithic and Noble Metal-Free Photoelectrochemical Device for Efficient Water Splitting. Zhu J; Guđmundsdóttir JB; Strandbakke R; Both KG; Aarholt T; Carvalho PA; Sørby MH; Jensen IJT; Guzik MN; Norby T; Haug H; Chatzitakis A ACS Appl Mater Interfaces; 2021 May; 13(17):20313-20325. PubMed ID: 33904298 [TBL] [Abstract][Full Text] [Related]
26. Surface Chemistry of Perovskite-Type Electrodes During High Temperature CO Opitz AK; Nenning A; Rameshan C; Kubicek M; Götsch T; Blume R; Hävecker M; Knop-Gericke A; Rupprechter G; Klötzer B; Fleig J ACS Appl Mater Interfaces; 2017 Oct; 9(41):35847-35860. PubMed ID: 28933825 [TBL] [Abstract][Full Text] [Related]
27. Boosting the Performance of the Nickel Anode in the Oxygen Evolution Reaction by Simple Electrochemical Activation. Shinagawa T; Ng MT; Takanabe K Angew Chem Int Ed Engl; 2017 Apr; 56(18):5061-5065. PubMed ID: 28345220 [TBL] [Abstract][Full Text] [Related]
28. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis. Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510 [TBL] [Abstract][Full Text] [Related]
29. Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis. Perović I; Marčeta Kaninski M; Tasić G; Maslovara S; Laušević P; Seović M; Nikolić V Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569971 [TBL] [Abstract][Full Text] [Related]
30. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Kim KY; Habas SE; Schaidle JA; Logan BE Bioresour Technol; 2019 Dec; 293():122067. PubMed ID: 31499330 [TBL] [Abstract][Full Text] [Related]
31. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Marzun G; Levish A; Mackert V; Kallio T; Barcikowski S; Wagener P J Colloid Interface Sci; 2017 Mar; 489():57-67. PubMed ID: 27651318 [TBL] [Abstract][Full Text] [Related]
32. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Bi L; Boulfrad S; Traversa E Chem Soc Rev; 2014 Dec; 43(24):8255-70. PubMed ID: 25134016 [TBL] [Abstract][Full Text] [Related]
33. Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H Zhang Y; Qiu Y; Wang Y; Li B; Zhang Y; Ma Z; Liu S ACS Appl Mater Interfaces; 2021 Jan; 13(3):3937-3948. PubMed ID: 33439615 [TBL] [Abstract][Full Text] [Related]
34. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
35. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801 [TBL] [Abstract][Full Text] [Related]
36. Molybdenum oxide-iron, cobalt, copper alloy hybrid as efficient bifunctional catalyst for alkali water electrolysis. Li J; Gu X; Chang J; Wu D; Xu F; Jiang K; Gao Z J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1662-1672. PubMed ID: 34507166 [TBL] [Abstract][Full Text] [Related]
37. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Chen L; Dong X; Wang Y; Xia Y Nat Commun; 2016 May; 7():11741. PubMed ID: 27199009 [TBL] [Abstract][Full Text] [Related]
38. A Universal Process: Self-Templated and Orientated Fabrication of XMoO Yang L; Liu H; Zhou Z; Chen Y; Xiong G; Zeng L; Deng Y; Zhang X; Liu H; Zhou W ACS Appl Mater Interfaces; 2020 Jul; 12(30):33785-33794. PubMed ID: 32631054 [TBL] [Abstract][Full Text] [Related]
39. Construction of Integrated Electrodes with Transport Highways for Pure-Water-Fed Anion Exchange Membrane Water Electrolysis. Wan L; Liu J; Xu Z; Xu Q; Pang M; Wang P; Wang B Small; 2022 May; 18(21):e2200380. PubMed ID: 35491509 [TBL] [Abstract][Full Text] [Related]