These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36036765)

  • 21. The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale.
    Oleshko VP
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8580-8. PubMed ID: 23421247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrabroadband infrared nanospectroscopic imaging.
    Bechtel HA; Muller EA; Olmon RL; Martin MC; Raschke MB
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7191-6. PubMed ID: 24803431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and application of electron vortex beams.
    Verbeeck J; Tian H; Schattschneider P
    Nature; 2010 Sep; 467(7313):301-4. PubMed ID: 20844532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam.
    Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ
    Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons.
    Guo LJ; Min CJ; Yuan GH; Zhang CL; Wang JG; Shen Z; Yuan XC
    Opt Express; 2012 Oct; 20(22):24748-53. PubMed ID: 23187239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures.
    Yang J; Hu C; Wen Q; Zhao C; Zhang J
    Opt Lett; 2015 Mar; 40(6):978-81. PubMed ID: 25768161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic resolution mapping of phonon excitations in STEM-EELS experiments.
    Egoavil R; Gauquelin N; Martinez GT; Van Aert S; Van Tendeloo G; Verbeeck J
    Ultramicroscopy; 2014 Dec; 147():1-7. PubMed ID: 24949597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams.
    Konečná A; Iyikanat F; García de Abajo FJ
    ACS Nano; 2021 Jun; 15(6):9890-9899. PubMed ID: 34006088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coherent interaction between free electrons and a photonic cavity.
    Wang K; Dahan R; Shentcis M; Kauffmann Y; Ben Hayun A; Reinhardt O; Tsesses S; Kaminer I
    Nature; 2020 Jun; 582(7810):50-54. PubMed ID: 32494081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale resolved infrared probing of crystal structure and of plasmon-phonon coupling.
    Huber A; Ocelic N; Taubner T; Hillenbrand R
    Nano Lett; 2006 Apr; 6(4):774-8. PubMed ID: 16608282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas.
    Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD
    Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-diffracting multi-electron vortex beams balancing their electron-electron interactions.
    Mutzafi M; Kaminer I; Harari G; Segev M
    Nat Commun; 2017 Sep; 8(1):650. PubMed ID: 28935885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secondary Electron Imaging of Light at the Nanoscale.
    Cohen M; Abulafia Y; Shavit R; Zalevsky Z
    ACS Nano; 2017 Mar; 11(3):3274-3281. PubMed ID: 28264151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sculpting the Plasmonic Responses of Nanoparticles by Directed Electron Beam Irradiation.
    Roccapriore KM; Cho SH; Lupini AR; Milliron DJ; Kalinin SV
    Small; 2022 Jan; 18(1):e2105099. PubMed ID: 34761528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.
    Chen QN; Ma F; Xie S; Liu Y; Proksch R; Li J
    Nanoscale; 2013 Jul; 5(13):5747-51. PubMed ID: 23720016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy.
    Colliex C
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S161-71. PubMed ID: 21844587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron-beam spectroscopy for nanophotonics.
    Polman A; Kociak M; García de Abajo FJ
    Nat Mater; 2019 Nov; 18(11):1158-1171. PubMed ID: 31308514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing.
    Lagos MJ; Batson PE
    Nano Lett; 2018 Jul; 18(7):4556-4563. PubMed ID: 29874456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient creation of electron vortex beams for high resolution STEM imaging.
    Béché A; Juchtmans R; Verbeeck J
    Ultramicroscopy; 2017 Jul; 178():12-19. PubMed ID: 27222320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.