These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36037152)
1. Improving food drying performance by cold plasma pretreatment: A systematic review. Du Y; Yang F; Yu H; Xie Y; Yao W Compr Rev Food Sci Food Saf; 2022 Sep; 21(5):4402-4421. PubMed ID: 36037152 [TBL] [Abstract][Full Text] [Related]
2. Development and Optimization of Cold Plasma Pretreatment for Drying on Corn Kernels. Li S; Chen S; Han F; Xv Y; Sun H; Ma Z; Chen J; Wu W J Food Sci; 2019 Aug; 84(8):2181-2189. PubMed ID: 31355452 [TBL] [Abstract][Full Text] [Related]
3. Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Bao T; Hao X; Shishir MRI; Karim N; Chen W Food Chem; 2021 Feb; 337():127783. PubMed ID: 32791427 [TBL] [Abstract][Full Text] [Related]
4. Green alternative methods for pretreatment of whole jujube before the drying process. Bao T; Hao X; Shishir MRI; Karim N; Chen W J Sci Food Agric; 2022 Feb; 102(3):1030-1039. PubMed ID: 34312880 [TBL] [Abstract][Full Text] [Related]
5. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. Yuan L; Lao F; Shi X; Zhang D; Wu J Ultrason Sonochem; 2022 Nov; 90():106219. PubMed ID: 36371874 [TBL] [Abstract][Full Text] [Related]
6. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Loureiro ADC; Souza FDCDA; Sanches EA; Bezerra JA; Lamarão CV; Rodrigues S; Fernandes FAN; Campelo PH Food Res Int; 2021 Sep; 147():110462. PubMed ID: 34399462 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. An NN; Li D; Wang LJ; Wang Y Crit Rev Food Sci Nutr; 2024; 64(9):2618-2633. PubMed ID: 36134904 [TBL] [Abstract][Full Text] [Related]
8. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. Osae R; Essilfie G; Alolga RN; Akaba S; Song X; Owusu-Ansah P; Zhou C J Sci Food Agric; 2020 Apr; 100(6):2585-2599. PubMed ID: 31975406 [TBL] [Abstract][Full Text] [Related]
9. Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption. Boateng ID; Yang XM J Food Sci; 2021 Oct; 86(10):4577-4593. PubMed ID: 34549439 [TBL] [Abstract][Full Text] [Related]
10. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Xu B; Sylvain Tiliwa E; Yan W; Roknul Azam SM; Wei B; Zhou C; Ma H; Bhandari B Food Res Int; 2022 Feb; 152():110744. PubMed ID: 35181116 [TBL] [Abstract][Full Text] [Related]
11. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. Karim N; Shishir MRI; Bao T; Chen W J Sci Food Agric; 2021 Dec; 101(15):6271-6280. PubMed ID: 33949697 [TBL] [Abstract][Full Text] [Related]
12. Cold plasma as a pre-treatment for processing improvement in food: A review. Bezerra JA; Lamarão CV; Sanches EA; Rodrigues S; Fernandes FAN; Ramos GLPA; Esmerino EA; Cruz AG; Campelo PH Food Res Int; 2023 May; 167():112663. PubMed ID: 37087253 [TBL] [Abstract][Full Text] [Related]
13. Achieving sustainability in heat drying processing: Leveraging artificial intelligence to maintain food quality and minimize carbon footprint. Yudhistira B; Adi P; Mulyani R; Chang CK; Gavahian M; Hsieh CW Compr Rev Food Sci Food Saf; 2024 Sep; 23(5):e13413. PubMed ID: 39137001 [TBL] [Abstract][Full Text] [Related]
14. Novel sequential and simultaneous infrared-accelerated drying technologies for the food industry: Principles, applications and challenges. Obajemihi OI; Cheng JH; Sun DW Crit Rev Food Sci Nutr; 2023; 63(11):1465-1482. PubMed ID: 36239579 [TBL] [Abstract][Full Text] [Related]
15. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Pandiselvam R; Aydar AY; Kutlu N; Aslam R; Sahni P; Mitharwal S; Gavahian M; Kumar M; Raposo A; Yoo S; Han H; Kothakota A Ultrason Sonochem; 2023 Jan; 92():106261. PubMed ID: 36516722 [TBL] [Abstract][Full Text] [Related]
16. Effects of emerging food pretreatment and drying techniques on protein structures, functional and nutritional properties: An updated review. Mahmood N; Muhoza B; Huang Y; Munir Z; Zhang Y; Zhang S; Li Y Crit Rev Food Sci Nutr; 2024 Sep; 64(26):9365-9381. PubMed ID: 37377348 [TBL] [Abstract][Full Text] [Related]
17. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Zhang B; Tan C; Zou F; Sun Y; Shang N; Wu W Foods; 2022 Sep; 11(18):. PubMed ID: 36140945 [TBL] [Abstract][Full Text] [Related]
18. Quality of plant-based food materials and its prediction during intermittent drying. Duc Pham N; Khan MIH; Joardder MUH; Rahman MM; Mahiuddin M; Abesinghe AMN; Karim MA Crit Rev Food Sci Nutr; 2019; 59(8):1197-1211. PubMed ID: 29190115 [TBL] [Abstract][Full Text] [Related]
19. High efficient freeze-drying technology in food industry. Liu Y; Zhang Z; Hu L Crit Rev Food Sci Nutr; 2022; 62(12):3370-3388. PubMed ID: 33393368 [TBL] [Abstract][Full Text] [Related]
20. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Rodríguez Ó; Eim V; Rosselló C; Femenia A; Cárcel JA; Simal S J Sci Food Agric; 2018 Mar; 98(5):1660-1673. PubMed ID: 28906555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]