These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36037289)

  • 1. Rapid in vivo multiplexed editing (RIME) of the adult mouse liver.
    Katsuda T; Cure H; Sussman J; Simeonov KP; Krapp C; Arany Z; Grompe M; Stanger BZ
    Hepatology; 2023 Aug; 78(2):486-502. PubMed ID: 36037289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Gene Editing in Lipid and Atherosclerosis Research.
    De Giorgi M; Jarrett KE; de Aguiar Vallim TQ; Lagor WR
    Methods Mol Biol; 2022; 2419():673-713. PubMed ID: 35237996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed conditional genome editing with Cas12a in
    Port F; Starostecka M; Boutros M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22890-22899. PubMed ID: 32843348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatic Liver Knockout (SLiK): A Quick and Efficient Way to Generate Liver-Specific Knockout Mice Using Multiplex CRISPR/Cas9 Gene Editing.
    Johnson CG; Chen T; Furey N; Hemmingsen MG; Bissig KD
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e117. PubMed ID: 32150344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
    El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R
    Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses.
    Yoon Y; Wang D; Tai PWL; Riley J; Gao G; Rivera-Pérez JA
    Nat Commun; 2018 Jan; 9(1):412. PubMed ID: 29379011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome editing of rodents by electroporation of CRISPR/Cas9 into frozen-warmed pronuclear-stage embryos.
    Kaneko T; Nakagawa Y
    Cryobiology; 2020 Feb; 92():231-234. PubMed ID: 31987837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Editing of Mouse Embryonic and Epiblast Stem Cells.
    Sibbritt T; Osteil P; Fan X; Sun J; Salehin N; Knowles H; Shen J; Tam PPL
    Methods Mol Biol; 2019; 1940():77-95. PubMed ID: 30788819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and effective genotyping workflow for rapid detection of CRISPR genome editing.
    Wang L; Wang J; Feng D; Wang B; Jahan-Mihan Y; Wang Y; Bi Y; Lim D; Ji B
    Am J Physiol Gastrointest Liver Physiol; 2024 Apr; 326(4):G473-G481. PubMed ID: 38410866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of CRISPR/Cas9 for the Modification of the Mouse Genome.
    Klimke A; Güttler S; Kuballa P; Janzen S; Ortmann S; Flora A
    Methods Mol Biol; 2019; 1953():213-230. PubMed ID: 30912024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis.
    Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31992616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for the CRISPR-Based Therapeutics.
    Li B; Niu Y; Ji W; Dong Y
    Trends Pharmacol Sci; 2020 Jan; 41(1):55-65. PubMed ID: 31862124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient CRISPR-mediated base editing for the gut Bacteroides spp. with pnCasBS-CBE.
    Liang J; Tan Y
    Biotechnol J; 2023 Jul; 18(7):e2200504. PubMed ID: 37010073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.