These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113 [TBL] [Abstract][Full Text] [Related]
4. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding. Müller E; Giehl A; Schwarzmann G; Sandhoff K; Blume A Biophys J; 1996 Sep; 71(3):1400-21. PubMed ID: 8874015 [TBL] [Abstract][Full Text] [Related]
5. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Lewis RN; McElhaney RN Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000 [TBL] [Abstract][Full Text] [Related]
6. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Needham D; McIntosh TJ; Evans E Biochemistry; 1988 Jun; 27(13):4668-73. PubMed ID: 3167010 [TBL] [Abstract][Full Text] [Related]
7. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
8. Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Reinl HM; Bayerl TM Biochim Biophys Acta; 1993 Sep; 1151(2):127-36. PubMed ID: 8373787 [TBL] [Abstract][Full Text] [Related]
9. Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Dibble AR; Hinderliter AK; Sando JJ; Biltonen RL Biophys J; 1996 Oct; 71(4):1877-90. PubMed ID: 8889163 [TBL] [Abstract][Full Text] [Related]
10. Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. Pasenkiewicz-Gierula M; Róg T; Kitamura K; Kusumi A Biophys J; 2000 Mar; 78(3):1376-89. PubMed ID: 10692323 [TBL] [Abstract][Full Text] [Related]
11. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. Mainali L; Raguz M; Subczynski WK J Phys Chem B; 2013 Aug; 117(30):8994-9003. PubMed ID: 23834375 [TBL] [Abstract][Full Text] [Related]
12. Association of ibuprofen at the polar/apolar interface of lipid membranes. Aloi E; Rizzuti B; Guzzi R; Bartucci R Arch Biochem Biophys; 2018 Sep; 654():77-84. PubMed ID: 30026026 [TBL] [Abstract][Full Text] [Related]
13. Lipid transfer between small unilamellar vesicles and single bilayers on a solid support: self-assembly of supported bilayers with asymmetric lipid distribution. Reinl HM; Bayerl TM Biochemistry; 1994 Nov; 33(47):14091-9. PubMed ID: 7947819 [TBL] [Abstract][Full Text] [Related]
14. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
15. Effect of polyols on the DMPC lipid monolayers and bilayers. Budziak I; Arczewska M; Sachadyn-Król M; Matwijczuk A; Waśko A; Gagoś M; Terpiłowski K; Kamiński DM Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2166-2174. PubMed ID: 30409512 [TBL] [Abstract][Full Text] [Related]
16. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors. Khelashvili G; Mondal S; Andersen OS; Weinstein H J Phys Chem B; 2010 Sep; 114(37):12046-57. PubMed ID: 20804205 [TBL] [Abstract][Full Text] [Related]
18. Cholesterol effects on the phospholipid condensation and packing in the bilayer: a molecular simulation study. Róg T; Pasenkiewicz-Gierula M FEBS Lett; 2001 Jul; 502(1-2):68-71. PubMed ID: 11478950 [TBL] [Abstract][Full Text] [Related]
19. Melting of individual lipid components in binary lipid mixtures studied by FTIR spectroscopy, DSC and Monte Carlo simulations. Fidorra M; Heimburg T; Seeger HM Biochim Biophys Acta; 2009 Mar; 1788(3):600-7. PubMed ID: 19150329 [TBL] [Abstract][Full Text] [Related]
20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]