These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36037910)

  • 1. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in plants.
    Cao Y; Li Y; Wang L; Zhang L; Jiang L
    Int J Biol Macromol; 2022 Nov; 221():796-805. PubMed ID: 36037910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the roles of leucine-rich repeat receptor-like protein kinases (LRR-RLKs) in response to Fusarium wilt in the Vernicia fordii (Tung tree).
    Cao Y; Mo W; Li Y; Li W; Dong X; Liu M; Jiang L; Zhang L
    Phytochemistry; 2021 May; 185():112686. PubMed ID: 33582587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic insights into lineage-specific evolution of the oleosin family in Euphorbiaceae.
    Zou Z; Zhao Y; Zhang L
    BMC Genomics; 2022 Mar; 23(1):178. PubMed ID: 35246041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of leucine-rich repeat receptor-like protein kinases: insight into resistance to
    Cao Y; Fan T; Zhang B; Li Y
    PeerJ; 2022; 10():e14416. PubMed ID: 36590451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt.
    Cao Y; Mo W; Li Y; Xiong Y; Wang H; Zhang Y; Lin M; Zhang L; Li X
    BMC Biol; 2024 Feb; 22(1):45. PubMed ID: 38408951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of flowering-related genes to control flowering in five Euphorbiaceae genomes.
    Jiang L; Fan T; Wang L; Zhang L; Xu J
    Front Plant Sci; 2022; 13():1015114. PubMed ID: 36340397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AHLs' life in plants: Especially their potential roles in responding to Fusarium wilt and repressing the seed oil accumulation.
    Li Y; Jiang L; Mo W; Wang L; Zhang L; Cao Y
    Int J Biol Macromol; 2022 May; 208():509-519. PubMed ID: 35341887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii).
    Zhang L; Wu P; Lu W; Lü S
    BMC Plant Biol; 2018 Oct; 18(1):248. PubMed ID: 30340540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hidden in plain sight: Systematic investigation of Leucine-rich repeat containing genes unveil the their regulatory network in response to Fusarium wilt in tung tree.
    Cao Y; Liu M; Long H; Zhao Q; Jiang L; Zhang L
    Int J Biol Macromol; 2020 Nov; 163():1759-1767. PubMed ID: 32961183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production.
    Zhang L; Liu M; Long H; Dong W; Pasha A; Esteban E; Li W; Yang X; Li Z; Song A; Ran D; Zhao G; Zeng Y; Chen H; Zou M; Li J; Liang F; Xie M; Hu J; Wang D; Cao H; Provart NJ; Zhang L; Tan X
    Genomics Proteomics Bioinformatics; 2019 Dec; 17(6):558-575. PubMed ID: 32224189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii).
    Cao H; Zhang L; Tan X; Long H; Shockey JM
    PLoS One; 2014; 9(2):e88409. PubMed ID: 24516650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21.
    Zhang L; Wu P; Li W; Feng T; Shockey J; Chen L; Zhang L; Lü S
    Plant J; 2021 Dec; 108(6):1735-1753. PubMed ID: 34643970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent Expression Patterns in Two Vernicia Species Revealed the Potential Role of the Hub Gene VmAP2/ERF036 in Resistance to Fusarium oxysporum in Vernicia montana.
    Zhang Q; Gao M; Wu L; Wang Y; Chen Y
    Genes (Basel); 2016 Dec; 7(12):. PubMed ID: 27916924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative analysis reveals evolutionary patterns and potential functions of SWEET transporters in Euphorbiaceae.
    Cao Y; Liu W; Zhao Q; Long H; Li Z; Liu M; Zhou X; Zhang L
    Int J Biol Macromol; 2019 Oct; 139():1-11. PubMed ID: 31323266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and Functional Analysis of the
    Liao LY; He ZQ; Zhang L
    Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37447035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Transcriptomics Atlases Reveals Different Gene Expression Pattern Related to
    Chen Y; Yin H; Gao M; Zhu H; Zhang Q; Wang Y
    Front Plant Sci; 2016; 7():1974. PubMed ID: 28083008
    [No Abstract]   [Full Text] [Related]  

  • 17. Papain-like cysteine protease encoding genes in rubber (Hevea brasiliensis): comparative genomics, phylogenetic, and transcriptional profiling analysis.
    Zou Z; Xie G; Yang L
    Planta; 2017 Nov; 246(5):999-1018. PubMed ID: 28752264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein partners of plant ubiquitin-specific proteases (UBPs).
    Wu R; Zheng W; Tan J; Sammer R; Du L; Lu C
    Plant Physiol Biochem; 2019 Dec; 145():227-236. PubMed ID: 31630936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsatellite marker development in tung trees (Vernicia montanaand V. fordii, Euphorbiaceae).
    Xu W; Yang Q; Huai H; Liu A
    Am J Bot; 2011 Aug; 98(8):e226-8. PubMed ID: 21821587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants.
    Zeng C; Wang W; Zheng Y; Chen X; Bo W; Song S; Zhang W; Peng M
    Nucleic Acids Res; 2010 Jan; 38(3):981-95. PubMed ID: 19942686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.