These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 36037944)

  • 1. An efficient Fe
    Yin H; Zhang Q; Jing J; Wang X; Yin X; Zhou M
    Chemosphere; 2022 Nov; 307(Pt 4):136168. PubMed ID: 36037944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical insight into carbamazepine degradation by chlorine-based advanced oxidation processes: Efficiency, energy consumption, mechanism and DBPs formation.
    Liu C; How ZT; Ju Y; Feng L; Ren X; Gamal El-Din M
    J Environ Sci (China); 2024 May; 139():72-83. PubMed ID: 38105079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.
    Zhou S; Xia Y; Li T; Yao T; Shi Z; Zhu S; Gao N
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16448-55. PubMed ID: 27164884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of nitrate on UV-chlorine photochemical degradation of carbamazepine.
    Suara MA; Bezares-Cruz JC
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):59690-59700. PubMed ID: 35396680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species.
    Wang WL; Wu QY; Huang N; Wang T; Hu HY
    Water Res; 2016 Jul; 98():190-8. PubMed ID: 27105033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet-Light-emitting-diode activated monochloramine for the degradation of carbamazepine: Kinetics, mechanisms, by-product formation, and toxicity.
    Wang X; Ao X; Zhang T; Li Z; Cai R; Chen Z; Wang Y; Sun W
    Sci Total Environ; 2022 Feb; 806(Pt 4):151372. PubMed ID: 34728210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV
    Bi W; Zhang X; Wang L; Ding Y; Zhu S; Ma X; Li Q; Li X; Deng J
    Sci Total Environ; 2023 Oct; 894():164847. PubMed ID: 37331403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor.
    Baycan N; Sengul F; Thomanetz E
    Environ Sci Pollut Res Int; 2005; 12(3):153-8. PubMed ID: 15986999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Blue 19 dye removal by UV-LED/chlorine advanced oxidation process.
    Gholizade A; Asadollahfardi G; Rezaei R
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):1704-1718. PubMed ID: 35922593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the performance of UV/chlorine/TiO
    Zhang H; Li Z; Zhou X; Lu X; Gu H; Ma J
    Sci Total Environ; 2022 Dec; 853():158345. PubMed ID: 36037890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation.
    Bu L; Zhou S; Zhu S; Wu Y; Duan X; Shi Z; Dionysiou DD
    Water Res; 2018 Dec; 146():288-297. PubMed ID: 30292129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of metronidazole by UV/chlorine treatment: Efficiency, mechanism, pathways and DBPs formation.
    Pan Y; Li X; Fu K; Deng H; Shi J
    Chemosphere; 2019 Jun; 224():228-236. PubMed ID: 30822729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.
    Xiang Y; Fang J; Shang C
    Water Res; 2016 Mar; 90():301-308. PubMed ID: 26748208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel solar-activated chlorine dioxide process for atrazine degradation in drinking water.
    Chen H; Lin T; Wang P; Wang Y; Wei W; Zhu S
    Water Res; 2023 Jul; 239():120056. PubMed ID: 37167851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical carbamazepine degradation: Effect of the generated active chlorine, transformation pathways and toxicity.
    García-Espinoza JD; Mijaylova-Nacheva P; Avilés-Flores M
    Chemosphere; 2018 Feb; 192():142-151. PubMed ID: 29101853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosing low-level ferrous iron in coagulation enhances the removal of micropollutants, chlorite and chlorate during advanced water treatment.
    Cassol GS; Shang C; Li J; Ling L; Yang X; Yin R
    J Environ Sci (China); 2022 Jul; 117():119-128. PubMed ID: 35725064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment.
    Zhang Y; Wang H; Li Y; Wang B; Huang J; Deng S; Yu G; Wang Y
    Water Res; 2020 Sep; 183():116115. PubMed ID: 32652347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: A new approach for Bisphenol A degradation in saline wastewater.
    Yaghoot-Nezhad A; Wacławek S; Madihi-Bidgoli S; Hassani A; Lin KA; Ghanbari F
    J Hazard Mater; 2023 Mar; 445():130626. PubMed ID: 36588018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of the UV activated chlorite process on trimethoprim: Degradation efficiency, energy consumption and disinfection by-products formation.
    Ye WK; Tian FX; Chen C; Ye J; Liu FW; Wang B; Hu XJ; Xu B
    Chemosphere; 2023 Jun; 327():138540. PubMed ID: 36996925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of UV/chlorine processes for the DR83:1 degradation from wastewater: Effect of coexisting anions.
    Rafiei N; Fatehizadeh A; Amin MM; Pourzamani HR; Ebrahimi A; Taheri E; Aminabhavi TM
    J Environ Manage; 2021 Nov; 297():113349. PubMed ID: 34314964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.