BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36038137)

  • 1. Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses.
    Paviolo C; Ferreira JS; Lee A; Hunter D; Calaresu I; Nandi S; Groc L; Cognet L
    Nano Lett; 2022 Sep; 22(17):6849-6856. PubMed ID: 36038137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis.
    Paviolo C; Soria FN; Ferreira JS; Lee A; Groc L; Bezard E; Cognet L
    Methods; 2020 Mar; 174():91-99. PubMed ID: 30862507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain.
    Godin AG; Varela JA; Gao Z; Danné N; Dupuis JP; Lounis B; Groc L; Cognet L
    Nat Nanotechnol; 2017 Mar; 12(3):238-243. PubMed ID: 27870840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space.
    Paviolo C; Cognet L
    Neurobiol Dis; 2021 Jun; 153():105328. PubMed ID: 33713842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Early Stage Liver Fibrosis by Modifications in the Interstitial Space Diffusive Microenvironment Using Fluorescent Single-Walled Carbon Nanotubes.
    Lee A; Simon AA; Boyreau A; Allain-Courtois N; Lambert B; Pradère JP; Saltel F; Cognet L
    Nano Lett; 2024 May; 24(18):5603-5609. PubMed ID: 38669477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent sp
    Mandal AK; Wu X; Ferreira JS; Kim M; Powell LR; Kwon H; Groc L; Wang Y; Cognet L
    Sci Rep; 2020 Mar; 10(1):5286. PubMed ID: 32210295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling.
    Soria FN; Paviolo C; Doudnikoff E; Arotcarena ML; Lee A; Danné N; Mandal AK; Gosset P; Dehay B; Groc L; Cognet L; Bezard E
    Nat Commun; 2020 Jul; 11(1):3440. PubMed ID: 32651387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale and functional heterogeneity of the hippocampal extracellular space.
    Grassi D; Idziak A; Lee A; Calaresu I; Sibarita JB; Cognet L; Nägerl UV; Groc L
    Cell Rep; 2023 May; 42(5):112478. PubMed ID: 37149864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue.
    Tønnesen J; Inavalli VVGK; Nägerl UV
    Cell; 2018 Feb; 172(5):1108-1121.e15. PubMed ID: 29474910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Different Single-Walled Carbon Nanotube Surface Coatings for Single-Particle Tracking Applications in Biological Environments.
    Gao Z; Danné N; Godin AG; Lounis B; Cognet L
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29144410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.
    Dong L
    Nanotechnology; 2009 Nov; 20(46):465602. PubMed ID: 19843998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local diffusion in the extracellular space of the brain.
    Tønnesen J; Hrabĕtová S; Soria FN
    Neurobiol Dis; 2023 Feb; 177():105981. PubMed ID: 36581229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells.
    Cherukuri P; Bachilo SM; Litovsky SH; Weisman RB
    J Am Chem Soc; 2004 Dec; 126(48):15638-9. PubMed ID: 15571374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradable Photonic Synaptic Transistors Based on Natural Biomaterials and Carbon Nanotubes.
    Ou Q; Yang B; Zhang J; Liu D; Chen T; Wang X; Hao D; Lu Y; Huang J
    Small; 2021 Mar; 17(10):e2007241. PubMed ID: 33590701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs.
    Fabbro A; Villari A; Laishram J; Scaini D; Toma FM; Turco A; Prato M; Ballerini L
    ACS Nano; 2012 Mar; 6(3):2041-55. PubMed ID: 22339712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of individual single-walled carbon nanotubes by fluorescent polymer wrapping.
    Didenko VV; Moore VC; Baskin DS; Smalley RE
    Nano Lett; 2005 Aug; 5(8):1563-7. PubMed ID: 16089489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Techniques for Investigating the Brain Extracellular Space.
    Soria FN; Miguelez C; Peñagarikano O; Tønnesen J
    Front Neurosci; 2020; 14():570750. PubMed ID: 33177979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput evolution of near-infrared serotonin nanosensors.
    Jeong S; Yang D; Beyene AG; Del Bonis-O'Donnell JT; Gest AMM; Navarro N; Sun X; Landry MP
    Sci Adv; 2019 Dec; 5(12):eaay3771. PubMed ID: 31897432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.