BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36038419)

  • 1. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.
    Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H
    Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Intracellular Delivery of Antibodies in Cancer Cells with Nanocarriers Sensing Endo/Lysosomal Enzymatic Activity.
    Chen P; Yang W; Mochida Y; Li S; Hong T; Kinoh H; Kataoka K; Cabral H
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202317817. PubMed ID: 38342757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preoccupation of Empty Carriers Decreases Endo-/Lysosome Escape and Reduces the Protein Delivery Efficiency of Mesoporous Silica Nanoparticles.
    Li WQ; Sun LP; Xia Y; Hao S; Cheng G; Wang Z; Wan Y; Zhu C; He H; Zheng SY
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5340-5347. PubMed ID: 29345456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.
    Panyam J; Zhou WZ; Prabha S; Sahoo SK; Labhasetwar V
    FASEB J; 2002 Aug; 16(10):1217-26. PubMed ID: 12153989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosomal escape for cell-targeted proteins. Going out after going in.
    Voltà-Durán E; Parladé E; Serna N; Villaverde A; Vazquez E; Unzueta U
    Biotechnol Adv; 2023; 63():108103. PubMed ID: 36702197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers.
    Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S
    Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform.
    Lv W; Champion JA
    Nanomedicine; 2021 Feb; 32():102315. PubMed ID: 33065253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework-Based Nanoplatform for Intracellular Environment-Responsive Endo/Lysosomal Escape and Enhanced Cancer Therapy.
    Dong K; Wang Z; Zhang Y; Ren J; Qu X
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31998-32005. PubMed ID: 30178654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers.
    Lee YW; Luther DC; Kretzmann JA; Burden A; Jeon T; Zhai S; Rotello VM
    Theranostics; 2019; 9(11):3280-3292. PubMed ID: 31244954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption.
    Lee CS; Park W; Park SJ; Na K
    Biomaterials; 2013 Dec; 34(36):9227-36. PubMed ID: 24008035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in tumor pH targeting nanotechnology.
    Lee ES; Gao Z; Bae YH
    J Control Release; 2008 Dec; 132(3):164-70. PubMed ID: 18571265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles.
    Wang J; Bhattacharyya J; Mastria E; Chilkoti A
    J Control Release; 2017 Aug; 260():100-110. PubMed ID: 28576641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escape sites from the endo-lysosomal trafficking route manipulate exocytosis of nanoparticles in polar epithelium.
    Wang L; Li Y; Liu X; Xing L; Wu R; Huang Y
    Biomater Sci; 2024 May; 12(10):2660-2671. PubMed ID: 38592706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocarriers Made of Proteins: Intracellular Visualization of a Smart Biodegradable Drug Delivery System.
    Frey ML; Han S; Halim H; Kaltbeitzel A; Riedinger A; Landfester K; Lieberwirth I
    Small; 2022 Apr; 18(15):e2106094. PubMed ID: 35224835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents.
    Brock DJ; Kondow-McConaghy HM; Hager EC; Pellois JP
    Bioconjug Chem; 2019 Feb; 30(2):293-304. PubMed ID: 30462487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
    Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX
    Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.