These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36038615)

  • 21. Solar-wind-magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate.
    He S; Wang H; Li F; Li H; Wang C
    Natl Sci Rev; 2020 Jan; 7(1):141-148. PubMed ID: 34692028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.
    Leonardi N; Ganju NK; Fagherazzi S
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):64-8. PubMed ID: 26699461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the global electric power system on terrestrial biodiversity.
    Holland RA; Scott K; Agnolucci P; Rapti C; Eigenbrod F; Taylor G
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):26078-26084. PubMed ID: 31792168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Atmospheric Indices in Describing Inshore Directional Wave Climate in the United Kingdom and Ireland.
    Scott T; McCarroll RJ; Masselink G; Castelle B; Dodet G; Saulter A; Scaife AA; Dunstone N
    Earths Future; 2021 May; 9(5):e2020EF001625. PubMed ID: 34222554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario.
    Gross M; Magar V
    PLoS One; 2016; 11(10):e0165423. PubMed ID: 27788208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of wind wave changes on diminishing ice period in Lake Pyhäjärvi during the last half-century.
    Wu T; Qin B; Zhu G; Huttula T; Lindfors A; Ventelä AM; Sheng Y; Ambrose RF
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24895-24906. PubMed ID: 29931637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review on China's wind power policy (1986-2017).
    Yuan L; Xi J
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25387-25398. PubMed ID: 31278643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the present and future offshore wind power potential: a case study in a target territory of the Baltic Sea near the Latvian coast.
    Lizuma L; Avotniece Z; Rupainis S; Teilans A
    ScientificWorldJournal; 2013; 2013():126428. PubMed ID: 23983619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot.
    Kati V; Kassara C; Vrontisi Z; Moustakas A
    Sci Total Environ; 2021 May; 768():144471. PubMed ID: 33454485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Widespread decline in winds promoted the growth of vegetation.
    Zhang T; Xu X; Jiang H; Qiao S; Guan M; Huang Y; Gong R
    Sci Total Environ; 2022 Jun; 825():153682. PubMed ID: 35134422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-Gaussian multivariate statistical monitoring of spatio-temporal wind speed frequencies to improve wind power quality in South Korea.
    Heo S; Lim JY; Chang R; Shim Y; Ifaei P; Yoo C
    J Environ Manage; 2022 Sep; 318():115516. PubMed ID: 35714472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A green energy research: forecasting of wind power for a cleaner environment using robust hybrid metaheuristic model.
    Kerem A; Saygin A; Rahmani R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50998-51010. PubMed ID: 34537944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost of wind energy generation should include energy storage allowance.
    Boretti A; Castelletto S
    Sci Rep; 2020 Feb; 10(1):2978. PubMed ID: 32076061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of large-scale wind power on global climate.
    Keith DW; Decarolis JF; Denkenberger DC; Lenschow DH; Malyshev SL; Pacala S; Rasch PJ
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16115-20. PubMed ID: 15536131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of the analytic hierarchy process to a sustainability assessment of coastal beach exploitation: a case study of the wind power projects on the coastal beaches of Yancheng, China.
    Tian W; Bai J; Sun H; Zhao Y
    J Environ Manage; 2013 Jan; 115():251-6. PubMed ID: 23262412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saturation wind power potential and its implications for wind energy.
    Jacobson MZ; Archer CL
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15679-84. PubMed ID: 23019353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expected global suitability of coffee, cashew and avocado due to climate change.
    Grüter R; Trachsel T; Laube P; Jaisli I
    PLoS One; 2022; 17(1):e0261976. PubMed ID: 35081123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.
    Cross BD; Kohfeld KE; Bailey J; Cooper AB
    PLoS One; 2015; 10(8):e0135730. PubMed ID: 26271035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An overview of offshore wind energy resources in Europe under present and future climate.
    deCastro M; Costoya X; Salvador S; Carvalho D; Gómez-Gesteira M; Sanz-Larruga FJ; Gimeno L
    Ann N Y Acad Sci; 2019 Jan; 1436(1):70-97. PubMed ID: 30008177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using historical tropical cyclone climate datasets to examine wind speed recurrence for coastal Australia.
    Bell SS; Dowdy AJ; Ramsay HA; Chand SS; Su CH; Ye H
    Sci Rep; 2022 Jul; 12(1):11612. PubMed ID: 35804030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.