These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36039662)

  • 1. Evaluation of tropical-temperate transitions: An example of climatic characterization in the Asian Palmate group of Araliaceae.
    Coca-de-la-Iglesia M; Medina NG; Wen J; Valcárcel V
    Am J Bot; 2022 Sep; 109(9):1488-1507. PubMed ID: 36039662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the early differentiation of ivies (Hedera L.) and the radiation of the Asian Palmate group (Araliaceae).
    Valcárcel V; Fiz-Palacios O; Wen J
    Mol Phylogenet Evol; 2014 Jan; 70():492-503. PubMed ID: 24184542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latitude, elevational climatic zonation and speciation in New World vertebrates.
    Cadena CD; Kozak KH; Gómez JP; Parra JL; McCain CM; Bowie RC; Carnaval AC; Moritz C; Rahbek C; Roberts TE; Sanders NJ; Schneider CJ; VanDerWal J; Zamudio KR; Graham CH
    Proc Biol Sci; 2012 Jan; 279(1726):194-201. PubMed ID: 21632626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of Neotropical Sicarius sand spiders suggests frequent transitions from deserts to dry forests despite antique, broad-scale niche conservatism.
    Magalhaes ILF; Neves DM; Santos FR; Vidigal THDA; Brescovit AD; Santos AJ
    Mol Phylogenet Evol; 2019 Nov; 140():106569. PubMed ID: 31362083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic zonation drives latitudinal variation in speciation mechanisms.
    Kozak KH; Wiens JJ
    Proc Biol Sci; 2007 Dec; 274(1628):2995-3003. PubMed ID: 17895224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the Araliaceae family involved rapid diversification of the Asian Palmate group and Hydrocotyle specific mutational pressure.
    Kang JS; Giang VNL; Park HS; Park YS; Cho W; Nguyen VB; Shim H; Waminal NE; Park JY; Kim HH; Yang TJ
    Sci Rep; 2023 Dec; 13(1):22325. PubMed ID: 38102332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India.
    Kumar M; Sheikh MA; Bussmann RW
    J Ethnobiol Ethnomed; 2011 Oct; 7():32. PubMed ID: 22011477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal.
    Li M; Feng J
    PLoS One; 2015; 10(10):e0140992. PubMed ID: 26488164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Protocol to Retrieve and Curate Spatial and Climatic Data from Online Biodiversity Databases Using R.
    Coca-De-La-Iglesia M; Valcárcel V; Medina NG
    Bio Protoc; 2023 Oct; 13(20):e4847. PubMed ID: 37900105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution Pattern and Climate Preferences of the Representatives of the Cosmopolitan Genus Sirthenea Spinola, 1840 (Heteroptera: Reduviidae: Peiratinae).
    Chłond D; Bugaj-Nawrocka A
    PLoS One; 2015; 10(10):e0140801. PubMed ID: 26495965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regularities in species' niches reveal the world's climate regions.
    Calatayud J; Neuman M; Rojas A; Eriksson A; Rosvall M
    Elife; 2021 Feb; 10():. PubMed ID: 33554863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological Diversity in South American Mammals: Their Geographical Distribution Shows Variable Associations with Phylogenetic Diversity and Does Not Follow the Latitudinal Richness Gradient.
    Fergnani PN; Ruggiero A
    PLoS One; 2015; 10(6):e0128264. PubMed ID: 26053742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae).
    Wiens JJ; Sukumaran J; Pyron RA; Brown RM
    Evolution; 2009 May; 63(5):1217-31. PubMed ID: 19154386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).
    Meseguer AS; Lobo JM; Ree R; Beerling DJ; Sanmartín I
    Syst Biol; 2015 Mar; 64(2):215-32. PubMed ID: 25398444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of floristic similarities between Taiwan and terrestrial ecoregions in Asia using GBIF data.
    Liao CC; Chen CH
    Bot Stud; 2017 Dec; 58(1):15. PubMed ID: 28510198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic consequences of climatic oscillations in the Quaternary.
    Hewitt GM
    Philos Trans R Soc Lond B Biol Sci; 2004 Feb; 359(1442):183-95; discussion 195. PubMed ID: 15101575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeographical divergence of the flora of Yunnan, southwestern China initiated by the uplift of Himalaya and extrusion of Indochina block.
    Hua Z
    PLoS One; 2012; 7(9):e45601. PubMed ID: 23029127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest.
    Thom G; Gehara M; Smith BT; Miyaki CY; do Amaral FR
    Nat Commun; 2021 Nov; 12(1):6269. PubMed ID: 34725329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses.
    Jansson R; Rodríguez-Castañeda G; Harding LE
    Evolution; 2013 Jun; 67(6):1741-55. PubMed ID: 23730766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.