These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 36039696)
1. Neuronal and glial cell co-culture organization and impedance spectroscopy on nanocolumnar TiN films for lab-on-a-chip devices. Abend A; Steele C; Schmidt S; Frank R; Jahnke HG; Zink M Biomater Sci; 2022 Sep; 10(19):5719-5730. PubMed ID: 36039696 [TBL] [Abstract][Full Text] [Related]
2. Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Sub-Strates. Abend A; Steele C; Schmidt S; Frank R; Jahnke HG; Zink M Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872379 [TBL] [Abstract][Full Text] [Related]
3. Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces. Abend A; Steele C; Jahnke HG; Zink M Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445294 [TBL] [Abstract][Full Text] [Related]
4. FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays. Jahnke HG; Schmidt S; Frank R; Weigel W; Prönnecke C; Robitzki AA Biosens Bioelectron; 2019 Mar; 129():208-215. PubMed ID: 30337105 [TBL] [Abstract][Full Text] [Related]
5. Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell in Vitro Recordings. Ryynänen T; Mzezewa R; Meriläinen E; Hyvärinen T; Lekkala J; Narkilahti S; Kallio P Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32423145 [TBL] [Abstract][Full Text] [Related]
6. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation. Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740 [TBL] [Abstract][Full Text] [Related]
7. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells. Shaik FA; Ihida S; Ikeuchi Y; Tixier-Mita A; Toshiyoshi H Biosens Bioelectron; 2020 Dec; 169():112546. PubMed ID: 32911315 [TBL] [Abstract][Full Text] [Related]
8. Ion Beam Assisted E-Beam Deposited TiN Microelectrodes-Applied to Neuronal Cell Culture Medium Evaluation. Ryynänen T; Toivanen M; Salminen T; Ylä-Outinen L; Narkilahti S; Lekkala J Front Neurosci; 2018; 12():882. PubMed ID: 30568570 [TBL] [Abstract][Full Text] [Related]
9. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Miccoli B; Lopez CM; Goikoetxea E; Putzeys J; Sekeri M; Krylychkina O; Chang SW; Firrincieli A; Andrei A; Reumers V; Braeken D Front Neurosci; 2019; 13():641. PubMed ID: 31293372 [TBL] [Abstract][Full Text] [Related]
10. Microelectrode Array With Transparent ALD TiN Electrodes. Ryynänen T; Pelkonen A; Grigoras K; Ylivaara OME; Hyvärinen T; Ahopelto J; Prunnila M; Narkilahti S; Lekkala J Front Neurosci; 2019; 13():226. PubMed ID: 30967754 [TBL] [Abstract][Full Text] [Related]
12. Gold nanostructure microelectrode arrays for in vitro recording and stimulation from neuronal networks. Koklu A; Atmaramani R; Hammack A; Beskok A; Pancrazio JJ; Gnade BE; Black BJ Nanotechnology; 2019 Jun; 30(23):235501. PubMed ID: 30776783 [TBL] [Abstract][Full Text] [Related]
13. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST). Bieberich E; Anthony GE Biosens Bioelectron; 2004 Mar; 19(8):923-31. PubMed ID: 15128112 [TBL] [Abstract][Full Text] [Related]
14. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation. Wang A; Jung D; Park J; Junek G; Wang H IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229 [TBL] [Abstract][Full Text] [Related]
15. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording. Biswas S; Sikdar D; Das D; Mahadevappa M; Das S Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording. Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339 [TBL] [Abstract][Full Text] [Related]
17. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology. Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Electrochemical Properties of Titanium Nitride Neural Stimulating and Recording Electrodes as a Function of Film Thickness and Voltage Biasing. Abbott JR; Joshi-Imre A; Cogan SF Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6647-6650. PubMed ID: 34892632 [TBL] [Abstract][Full Text] [Related]
19. The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells. Cyster LA; Grant DM; Parker KG; Parker TL Biomol Eng; 2002 Aug; 19(2-6):171-5. PubMed ID: 12202178 [TBL] [Abstract][Full Text] [Related]
20. Application of spike sorting algorithm to neuronal signals originated from boron doped diamond micro-electrode arrays. Klempíř O; Krupička R; Krůšek J; Dittert I; Petráková V; Petrák V; Taylor A Physiol Res; 2020 Jul; 69(3):529-536. PubMed ID: 32469239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]