BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36039751)

  • 1. Chasing protons in lithium-ion batteries.
    Chen Z
    Chem Commun (Camb); 2022 Sep; 58(73):10127-10135. PubMed ID: 36039751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Active Sites for Parasitic Reactions at the Cathode-Electrolyte Interface.
    Xie Y; Gao H; Gim J; Ngo AT; Ma ZF; Chen Z
    J Phys Chem Lett; 2019 Feb; 10(3):589-594. PubMed ID: 30668123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi(0.6)Mn(0.2)Co(0.2)O2.
    Zeng X; Xu GL; Li Y; Luo X; Maglia F; Bauer C; Lux SF; Paschos O; Kim SJ; Lamp P; Lu J; Amine K; Chen Z
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3446-51. PubMed ID: 26795232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries.
    Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A
    Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode-Electrolyte Interface in Lithium-Ion Batteries.
    Gao H; Maglia F; Lamp P; Amine K; Chen Z
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44542-44549. PubMed ID: 29211441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries.
    Zhang L; Zhang B; Hu J; Liu J; Miao L; Jiang J
    Small Methods; 2021 Jun; 5(6):e2100094. PubMed ID: 34927912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives.
    Nie K; Hong Y; Qiu J; Li Q; Yu X; Li H; Chen L
    Front Chem; 2018; 6():616. PubMed ID: 30619824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negating the Interfacial Resistance between Solid and Liquid Electrolytes for Next-Generation Lithium Batteries.
    Vivek JP; Meddings N; Garcia-Araez N
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):633-646. PubMed ID: 34962750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the Dynamic Interfacial Behavior of LiCoO
    Hong M; Lee S; Ho VC; Lee D; Yu SH; Mun J
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10267-10276. PubMed ID: 35188752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches.
    Shi X; Zheng T; Xiong J; Zhu B; Cheng YJ; Xia Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57107-57117. PubMed ID: 34797642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries.
    Chun GH; Shim JH; Yu S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1241-1248. PubMed ID: 34951299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries.
    Dose WM; Temprano I; Allen JP; Björklund E; O'Keefe CA; Li W; Mehdi BL; Weatherup RS; De Volder MFL; Grey CP
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13206-13222. PubMed ID: 35258927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing a Low-Impedance Interface on a High-Voltage LiNi
    Li G; Liao Y; Li Z; Xu N; Lu Y; Lan G; Sun G; Li W
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37013-37026. PubMed ID: 32700895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Level Alignment at the Cobalt Phosphate/Electrolyte Interface: Intrinsic Stability vs Interfacial Chemical Reactions in 5 V Lithium Ion Batteries.
    Cherkashinin G; Eilhardt R; Nappini S; Cococcioni M; Píš I; Dal Zilio S; Bondino F; Marzari N; Magnano E; Alff L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):543-556. PubMed ID: 34932299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via
    Li Q; Zhang X; Peng J; Wang Z; Rao Z; Li Y; Li Z; Fang C; Han J; Huang Y
    ACS Appl Mater Interfaces; 2022 May; 14(18):21018-21027. PubMed ID: 35482579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS.
    Hekmatfar M; Kazzazi A; Eshetu GG; Hasa I; Passerini S
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43166-43179. PubMed ID: 31651141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Scale Direct Identification of Surface Variations in Cathode Oxides for Aqueous and Nonaqueous Lithium-Ion Batteries.
    Byeon P; Lee HJ; Choi JW; Chung SY
    ChemSusChem; 2019 Feb; 12(4):787-794. PubMed ID: 30609321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.