These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 36039893)
1. Energy-saving H Liu B; Wang G; Feng X; Dai L; Wen Z; Ci S Nanoscale; 2022 Sep; 14(35):12841-12848. PubMed ID: 36039893 [TBL] [Abstract][Full Text] [Related]
2. High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. Fan L; Ji Y; Wang G; Chen J; Chen K; Liu X; Wen Z J Am Chem Soc; 2022 Apr; 144(16):7224-7235. PubMed ID: 35404594 [TBL] [Abstract][Full Text] [Related]
3. Development of high-efficiency alkaline OER electrodes for hybrid acid-alkali electrolytic H Wang Z; Cai P; Chen Q; Yin X; Chen K; Lu Z; Wen Z J Colloid Interface Sci; 2023 Apr; 636():610-617. PubMed ID: 36669454 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. Shen H; Wei T; Liu Q; Zhang S; Luo J; Liu X J Colloid Interface Sci; 2023 Mar; 634():730-736. PubMed ID: 36563429 [TBL] [Abstract][Full Text] [Related]
5. Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst. Li G; Han G; Wang L; Cui X; Moehring NK; Kidambi PR; Jiang DE; Sun Y Nat Commun; 2023 Jan; 14(1):525. PubMed ID: 36720867 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO Yu X; Dos Santos EC; White J; Salazar-Alvarez G; Pettersson LGM; Cornell A; Johnsson M Small; 2021 Nov; 17(44):e2104288. PubMed ID: 34596974 [TBL] [Abstract][Full Text] [Related]
7. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Li Y; Wei X; Chen L; Shi J; He M Nat Commun; 2019 Nov; 10(1):5335. PubMed ID: 31767871 [TBL] [Abstract][Full Text] [Related]
8. Molybdenum, tungsten doped cobalt phosphides as efficient catalysts for coproduction of hydrogen and formate by glycerol electrolysis. Chang J; Song F; Hou Y; Wu D; Xu F; Jiang K; Gao Z J Colloid Interface Sci; 2024 Jul; 665():152-162. PubMed ID: 38520932 [TBL] [Abstract][Full Text] [Related]
9. Heterointerface-Rich Ni Wang H; Zhan W; Jiang S; Deng K; Wang Z; Xu Y; Yu H; Wang L ChemSusChem; 2024 Sep; 17(18):e202400624. PubMed ID: 38616165 [TBL] [Abstract][Full Text] [Related]
10. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading. Chang J; Wang W; Wu D; Xu F; Jiang K; Guo Y; Gao Z J Colloid Interface Sci; 2023 Oct; 648():259-269. PubMed ID: 37301150 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Anodic and Cathodic Formate Production in a Paired Electrolyzer by CO Junqueira JRC; Das D; Cathrin Brix A; Dieckhöfer S; Weidner J; Wang X; Shi J; Schuhmann W ChemSusChem; 2023 Jun; 16(11):e202202349. PubMed ID: 36897020 [TBL] [Abstract][Full Text] [Related]
12. Selective Adsorption Behavior Modulation on Nickel Selenide by Heteroatom Implantation and Heterointerface Construction Achieves Efficient Co-production of H Feng Y; He X; Cheng M; Zhu Y; Wang W; Zhang Y; Zhang H; Zhang G Small; 2023 Aug; 19(35):e2301986. PubMed ID: 37096917 [TBL] [Abstract][Full Text] [Related]
13. Nickel-Cobalt Selenide Electrocatalytic Electrode toward Glucose Oxidation Coupling with Alkaline Hydrogen Production. Lin X; Zhong H; Hu W; Du J Inorg Chem; 2023 Jul; 62(26):10513-10521. PubMed ID: 37347151 [TBL] [Abstract][Full Text] [Related]
14. Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions. Li S; Liu D; Wang G; Ma P; Wang X; Wang J; Ma R Nanomicro Lett; 2023 Jul; 15(1):189. PubMed ID: 37515627 [TBL] [Abstract][Full Text] [Related]
15. Value-Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration. Li M; Deng X; Xiang K; Liang Y; Zhao B; Hao J; Luo JL; Fu XZ ChemSusChem; 2020 Mar; 13(5):914-921. PubMed ID: 31808618 [TBL] [Abstract][Full Text] [Related]
16. Co-Ni Layered Double Hydroxide for the Electrocatalytic Oxidation of Organic Molecules: An Approach to Lowering the Overall Cell Voltage for the Water Splitting Process. Shilpa N; Pandikassala A; Krishnaraj P; Walko PS; Devi RN; Kurungot S ACS Appl Mater Interfaces; 2022 Apr; 14(14):16222-16232. PubMed ID: 35377138 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the d-band center of metal-organic frameworks for energy-saving hydrogen generation coupled with selective glycerol oxidation. He Y; Ma Z; Yan F; Zhu C; Shen T; Chou S; Zhang X; Chen Y Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320777121. PubMed ID: 38630719 [TBL] [Abstract][Full Text] [Related]
18. A Pair-Electrosynthesis for Formate at Ultra-Low Voltage Via Coupling of CO Li M; Wang T; Zhao W; Wang S; Zou Y Nanomicro Lett; 2022 Nov; 14(1):211. PubMed ID: 36319899 [TBL] [Abstract][Full Text] [Related]
19. A p-block dopant enables energy-efficient hydrogen production from biomass. Liu W; Tang J; Kong C; Yin R; Guo W; Dai J; Wu F; Shi W; Cao X Chem Commun (Camb); 2024 May; 60(38):5058-5061. PubMed ID: 38634822 [TBL] [Abstract][Full Text] [Related]
20. Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Zhang Y; Zhou B; Wei Z; Zhou W; Wang D; Tian J; Wang T; Zhao S; Liu J; Tao L; Wang S Adv Mater; 2021 Dec; 33(48):e2104791. PubMed ID: 34561909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]