These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36040138)

  • 21. Association of small hydrophobic solute in presence of the osmolytes urea and trimethylamine-N-oxide.
    Sarma R; Paul S
    J Phys Chem B; 2012 Mar; 116(9):2831-41. PubMed ID: 22300285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions.
    Seo J; Singh R; Ryu J; Choi JH
    J Chem Inf Model; 2024 Jan; 64(1):138-149. PubMed ID: 37983534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of TMAO and urea in the hydration shell of the protein SNase.
    Voloshin V; Smolin N; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2019 Sep; 21(35):19469-19479. PubMed ID: 31461098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical Model for the Counteracting Effects of Trimethylamine
    Teng X; Ichiye T
    J Phys Chem B; 2020 Mar; 124(10):1978-1986. PubMed ID: 32059113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction.
    Ganguly P; Boserman P; van der Vegt NFA; Shea JE
    J Am Chem Soc; 2018 Jan; 140(1):483-492. PubMed ID: 29214802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Counteracting Effects of Trimethylamine
    Malik R; Chandra A
    J Phys Chem B; 2023 Aug; 127(33):7372-7383. PubMed ID: 37566900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TMAO and urea in the hydration shell of the protein SNase.
    Smolin N; Voloshin VP; Anikeenko AV; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2017 Mar; 19(9):6345-6357. PubMed ID: 28116386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noncovalent interactions in microsolvated networks of trimethylamine N-oxide.
    Cuellar KA; Munroe KL; Magers DH; Hammer NI
    J Phys Chem B; 2014 Jan; 118(2):449-59. PubMed ID: 24350663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An X-ray and neutron scattering study of the equilibrium between trimethylamine N-oxide and urea in aqueous solution.
    Meersman F; Bowron D; Soper AK; Koch MH
    Phys Chem Chem Phys; 2011 Aug; 13(30):13765-71. PubMed ID: 21720648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.
    Jaravine VA; Rathgeb-Szabo K; Alexandrescu AT
    Protein Sci; 2000 Feb; 9(2):290-301. PubMed ID: 10716181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.
    Athawale MV; Dordick JS; Garde S
    Biophys J; 2005 Aug; 89(2):858-66. PubMed ID: 15894642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks.
    Xia K; Anand DV; Shikhar S; Mu Y
    Phys Chem Chem Phys; 2019 Oct; 21(37):21038-21048. PubMed ID: 31528920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Urea and TMAO on Lipid Self-Assembly under Osmotic Stress Conditions.
    Pham QD; Wolde-Kidan A; Gupta A; Schlaich A; Schneck E; Netz RR; Sparr E
    J Phys Chem B; 2018 Jun; 122(25):6471-6482. PubMed ID: 29693387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of TMAO and Pressure on the Folding Equilibrium of TrpCage.
    Folberth A; van der Vegt NFA
    J Phys Chem B; 2022 Oct; 126(42):8374-8380. PubMed ID: 36251479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of a DNA G-quadruplex with TMAO and urea: a molecular dynamics study on co-solute compensation mechanisms.
    Oprzeska-Zingrebe EA; Smiatek J
    Phys Chem Chem Phys; 2021 Jan; 23(2):1254-1264. PubMed ID: 33355575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamine N-oxide.
    Reddy PM; Taha M; Venkatesu P; Kumar A; Lee MJ
    J Chem Phys; 2012 Jun; 136(23):234904. PubMed ID: 22779616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.