These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36040145)

  • 1. No means 'No': a non-improper modeling approach, with embedded speculative context.
    Tiwary P; Madhubalan A; Gautam A
    Bioinformatics; 2022 Oct; 38(20):4790-4796. PubMed ID: 36040145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating sentence representations for biomedical text: Methods and experimental results.
    Tawfik NS; Spruit MR
    J Biomed Inform; 2020 Apr; 104():103396. PubMed ID: 32147441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study.
    Rivera Zavala R; Martinez P
    JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural negated entity recognition in Spanish electronic health records.
    Santiso S; Pérez A; Casillas A; Oronoz M
    J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical negation scope detection with conditional random fields.
    Agarwal S; Yu H
    J Am Med Inform Assoc; 2010; 17(6):696-701. PubMed ID: 20962133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CODER: Knowledge-infused cross-lingual medical term embedding for term normalization.
    Yuan Z; Zhao Z; Sun H; Li J; Wang F; Yu S
    J Biomed Inform; 2022 Feb; 126():103983. PubMed ID: 34990838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain.
    Lange L; Adel H; Strötgen J; Klakow D
    Bioinformatics; 2022 Jun; 38(12):3267-3274. PubMed ID: 35485748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking Effectiveness and Efficiency of Deep Learning Models for Semantic Textual Similarity in the Clinical Domain: Validation Study.
    Chen Q; Rankine A; Peng Y; Aghaarabi E; Lu Z
    JMIR Med Inform; 2021 Dec; 9(12):e27386. PubMed ID: 34967748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
    Mao Y; Fung KW
    J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMMU: A survey of transformer-based biomedical pretrained language models.
    Kalyan KS; Rajasekharan A; Sangeetha S
    J Biomed Inform; 2022 Feb; 126():103982. PubMed ID: 34974190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linguistic scope-based and biological event-based speculation and negation annotations in the BioScope and Genia Event corpora.
    Vincze V; Szarvas G; Móra G; Ohta T; Farkas R
    J Biomed Semantics; 2011 Oct; 2 Suppl 5(Suppl 5):S8. PubMed ID: 22166355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformers-sklearn: a toolkit for medical language understanding with transformer-based models.
    Yang F; Wang X; Ma H; Li J
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):90. PubMed ID: 34330244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.
    Ormerod M; Martínez Del Rincón J; Devereux B
    JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes.
    Vincze V; Szarvas G; Farkas R; Móra G; Csirik J
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S9. PubMed ID: 19025695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic Similarity of Alternatives Fostered by Conversational Negation.
    Capuano F; Dudschig C; Günther F; Kaup B
    Cogn Sci; 2021 Jul; 45(7):e13015. PubMed ID: 34288035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negation and speculation processing: A study on cue-scope labelling and assertion classification in Spanish clinical text.
    Perez N; Cuadros M; Rigau G
    Artif Intell Med; 2023 Nov; 145():102682. PubMed ID: 37925211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.