These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 36040151)

  • 1. Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium.
    Yin J; Zhu Y; Liang Y; Luo Y; Lou J; Hu X; Meng Q; Zhu T; Yu Z
    Appl Environ Microbiol; 2022 Sep; 88(18):e0084622. PubMed ID: 36040151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of major peptidoglycan recycling enzymes in β-Lactamase production in Shewanella oneidensis.
    Yin J; Mao Y; Ju L; Jin M; Sun Y; Jin S; Gao H
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6536-43. PubMed ID: 25136029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis.
    Yin J; Sun Y; Mao Y; Jin M; Gao H
    Antimicrob Agents Chemother; 2015; 59(6):3357-64. PubMed ID: 25824223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in regulatory mechanism for inducing β-lactamase in Gram-negative bacteria].
    Xu C; Zhang T; Cai J; Yu Z; Qiu J; Yin J
    Sheng Wu Gong Cheng Xue Bao; 2018 Aug; 34(8):1288-1296. PubMed ID: 30152214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance.
    Park SH; Choi U; Ryu SH; Lee HB; Lee JW; Lee CR
    Microbiol Spectr; 2022 Aug; 10(4):e0173422. PubMed ID: 35758683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid in situ procedure for determination of bacterial susceptibility or resistance to antibiotics that inhibit peptidoglycan biosynthesis.
    Santiso R; Tamayo M; Gosálvez J; Bou G; Fernández Mdel C; Fernández JL
    BMC Microbiol; 2011 Aug; 11():191. PubMed ID: 21867549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.
    Domínguez-Gil T; Molina R; Alcorlo M; Hermoso JA
    Drug Resist Updat; 2016 Sep; 28():91-104. PubMed ID: 27620957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cell-wall recycling.
    Johnson JW; Fisher JF; Mobashery S
    Ann N Y Acad Sci; 2013 Jan; 1277(1):54-75. PubMed ID: 23163477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.
    Reed P; Atilano ML; Alves R; Hoiczyk E; Sher X; Reichmann NT; Pereira PM; Roemer T; Filipe SR; Pereira-Leal JB; Ligoxygakis P; Pinho MG
    PLoS Pathog; 2015 May; 11(5):e1004891. PubMed ID: 25951442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Modeling and Simulation of the Peptidoglycan Layer of Gram-Positive Bacteria
    Pokhrel R; Shakya R; Baral P; Chapagain P
    J Chem Inf Model; 2022 Oct; 62(20):4955-4962. PubMed ID: 35981320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of MupP as a New Peptidoglycan Recycling Factor and Antibiotic Resistance Determinant in
    Fumeaux C; Bernhardt TG
    mBio; 2017 Mar; 8(2):. PubMed ID: 28351916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling of Gram-positive bacteria peptidoglycan layer, selected glycopeptide antibiotics and vancomycin derivatives modified with sugar moieties.
    Ślusarz R; Szulc M; Madaj J
    Carbohydr Res; 2014 May; 389():154-64. PubMed ID: 24685455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors.
    Wolf D; Mascher T
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4817-29. PubMed ID: 27102123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A whole-cell hypersensitive biosensor for beta-lactams based on the AmpR-AmpC regulatory circuit from the Antarctic Pseudomonas sp. IB20.
    Higuera-Llantén S; Alcalde-Rico M; Vasquez-Ponce F; Ibacache-Quiroga C; Blazquez J; Olivares-Pacheco J
    Microb Biotechnol; 2024 Jan; 17(1):e14385. PubMed ID: 38197486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in
    Yin J; Sun Y; Sun Y; Yu Z; Qiu J; Gao H
    Front Microbiol; 2018; 9():13. PubMed ID: 29403465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
    Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance.
    Dhar S; Kumari H; Balasubramanian D; Mathee K
    J Med Microbiol; 2018 Jan; 67(1):1-21. PubMed ID: 29185941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival.
    Silveiro C; Marques M; Olivença F; Pires D; Mortinho D; Nunes A; Pimentel M; Anes E; Catalão MJ
    Front Cell Infect Microbiol; 2023; 13():1089911. PubMed ID: 37009497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa.
    Fisher JF; Mobashery S
    Bioorg Chem; 2014 Oct; 56():41-8. PubMed ID: 24955547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.