These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36040289)

  • 21. Synthesis of Au@Cu
    Zhu S; Deng D; Nguyen MT; Chau YR; Wen CY; Yonezawa T
    Langmuir; 2020 Apr; 36(13):3386-3392. PubMed ID: 32176501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au-Cu₂O and Bimetallic Core-Shell Nanocrystals.
    Huang MH; Rej S; Chiu CY
    Small; 2015 Jun; 11(23):2716-26. PubMed ID: 25703694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting.
    Xiong Z; Zheng M; Liu S; Ma L; Shen W
    Nanotechnology; 2013 Jul; 24(26):265402. PubMed ID: 23733303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Au-Mediated Charge Transfer Process of Ternary Cu
    Shao Z; Zhang Y; Yang X; Zhong M
    ACS Omega; 2020 Apr; 5(13):7503-7518. PubMed ID: 32280894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cu
    Liu Y; Tan H; Wei Y; Liu M; Hong J; Gao W; Zhao S; Zhang S; Guo S
    ACS Nano; 2023 Mar; 17(6):5994-6001. PubMed ID: 36882234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic enhanced Cu
    Cheng X; Gu S; Centeno A; Dawson G
    Sci Rep; 2019 Mar; 9(1):5140. PubMed ID: 30914703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting.
    Zhou N; Yan R; Wang X; Fu J; Zhang J; Li Y; Sun X
    Chemosphere; 2021 Jun; 273():129679. PubMed ID: 33515964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced photocatalytic performance of coaxially electrospun titania nanofibers comprising yolk-shell particles.
    Kumar L; Nandan B; Sarkar S; König TAF; Pohl D; Tsuda T; Zainuddin MSB; Humenik M; Scheibel T; Horechyy A
    J Colloid Interface Sci; 2024 Nov; 674():560-575. PubMed ID: 38945024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yolk@Shell Nanoarchitecture of Au@r-GO/TiO₂ Hybrids as Powerful Visible Light Photocatalysts.
    Wang M; Han J; Xiong H; Guo R
    Langmuir; 2015 Jun; 31(22):6220-8. PubMed ID: 25996904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Semiconductor Heteronanocrystals with Desired Configurations for Plasmonic Photocatalysis.
    Hong JW; Wi DH; Lee SU; Han SW
    J Am Chem Soc; 2016 Dec; 138(48):15766-15773. PubMed ID: 27933998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Au@TiO₂ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field.
    Tu W; Zhou Y; Li H; Li P; Zou Z
    Nanoscale; 2015 Sep; 7(34):14232-6. PubMed ID: 26156088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrathin MoS
    Ali A; Mangrio FA; Chen X; Dai Y; Chen K; Xu X; Xia R; Zhu L
    Nanoscale; 2019 Apr; 11(16):7813-7824. PubMed ID: 30958488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Metal Mediated Charge Transfer in Stacked Core-Shell Semiconductor Heterojunction for Significantly Enhanced CO
    Wang S; Zhang Y; Zheng Y; Xu Y; Yang G; Zhong S; Zhao Y; Bai S
    Small; 2023 Jan; 19(2):e2204774. PubMed ID: 36394158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size Control and Growth Process Study of Au@Cu2O Particles.
    Wang Y; Zheng M; Liu S; Wang Z
    Nanoscale Res Lett; 2016 Dec; 11(1):390. PubMed ID: 27613067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composition-dependent activity of Zn
    Wei L; Zeng D; Liu J; Zheng H; Fujita T; Liao M; Li C; Wei Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):3087-3097. PubMed ID: 34802767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals.
    Ge F; Zhao Y; Feng C; Li X; Wang J; Liu H; Hu L; Chen Y; Chen F; Cheng F; Wei HY; Wu XJ
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32847-32856. PubMed ID: 38862405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion.
    Tang L; Liang S; Li JB; Zhang D; Chen WB; Yang ZJ; Xiao S; Wang QQ
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32245031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.