These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36040302)

  • 1. Neuroscout, a unified platform for generalizable and reproducible fMRI research.
    de la Vega A; Rocca R; Blair RW; Markiewicz CJ; Mentch J; Kent JD; Herholz P; Ghosh SS; Poldrack RA; Yarkoni T
    Elife; 2022 Aug; 11():. PubMed ID: 36040302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis.
    Cai MB; Shvartsman M; Wu A; Zhang H; Zhu X
    Neuropsychologia; 2020 Jul; 144():107500. PubMed ID: 32433952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of spatial fMRI resolution on the classification of naturalistic movies.
    Mandelkow H; de Zwart JA; Duyn JH
    Neuroimage; 2017 Nov; 162():45-55. PubMed ID: 28842385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of stimulus-induced brain dynamics during naturalistic paradigms.
    Simony E; Chang C
    Neuroimage; 2020 Aug; 216():116461. PubMed ID: 31843711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Automatic Neuroscientist: A framework for optimizing experimental design with closed-loop real-time fMRI.
    Lorenz R; Monti RP; Violante IR; Anagnostopoulos C; Faisal AA; Montana G; Leech R
    Neuroimage; 2016 Apr; 129():320-334. PubMed ID: 26804778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning in resting-state fMRI analysis.
    Khosla M; Jamison K; Ngo GH; Kuceyeski A; Sabuncu MR
    Magn Reson Imaging; 2019 Dec; 64():101-121. PubMed ID: 31173849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression.
    Raz G; Svanera M; Singer N; Gilam G; Cohen MB; Lin T; Admon R; Gonen T; Thaler A; Granot RY; Goebel R; Benini S; Valente G
    Neuroimage; 2017 Dec; 163():244-263. PubMed ID: 28939433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-dependent functional connectivity methods.
    Huber L; Finn ES; Chai Y; Goebel R; Stirnberg R; Stöcker T; Marrett S; Uludag K; Kim SG; Han S; Bandettini PA; Poser BA
    Prog Neurobiol; 2021 Dec; 207():101835. PubMed ID: 32512115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large-scale fMRI dataset for the visual processing of naturalistic scenes.
    Gong Z; Zhou M; Dai Y; Wen Y; Liu Y; Zhen Z
    Sci Data; 2023 Aug; 10(1):559. PubMed ID: 37612327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Le Petit Prince multilingual naturalistic fMRI corpus.
    Li J; Bhattasali S; Zhang S; Franzluebbers B; Luh WM; Spreng RN; Brennan JR; Yang Y; Pallier C; Hale J
    Sci Data; 2022 Aug; 9(1):530. PubMed ID: 36038567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sentiments analysis of fMRI using automatically generated stimuli labels under naturalistic paradigm.
    Mahrukh R; Shakil S; Malik AS
    Sci Rep; 2023 May; 13(1):7267. PubMed ID: 37142654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BrainNET: Inference of Brain Network Topology Using Machine Learning.
    Murugesan GK; Ganesh C; Nalawade S; Davenport EM; Wagner B; Kim WH; Maldjian JA
    Brain Connect; 2020 Oct; 10(8):422-435. PubMed ID: 33030350
    [No Abstract]   [Full Text] [Related]  

  • 17. A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures.
    Bondi E; Maggioni E; Brambilla P; Delvecchio G
    Neurosci Biobehav Rev; 2023 Jan; 144():104972. PubMed ID: 36436736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RS-FetMRI: a MATLAB-SPM Based Tool for Pre-processing Fetal Resting-State fMRI Data.
    Pecco N; Canini M; Mosser KHH; Caglioni M; Scifo P; Castellano A; Cavoretto P; Candiani M; Baldoli C; Falini A; Rosa PAD
    Neuroinformatics; 2022 Oct; 20(4):1137-1154. PubMed ID: 35834105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for generating reproducible evidence in fMRI studies.
    Liou M; Su HR; Lee JD; Aston JA; Tsai AC; Cheng PE
    Neuroimage; 2006 Jan; 29(2):383-95. PubMed ID: 16226893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A topography-based predictive framework for naturalistic viewing fMRI.
    Li X; Friedrich P; Patil KR; Eickhoff SB; Weis S
    Neuroimage; 2023 Aug; 277():120245. PubMed ID: 37353099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.