These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. A large-scale fMRI dataset for the visual processing of naturalistic scenes. Gong Z; Zhou M; Dai Y; Wen Y; Liu Y; Zhen Z Sci Data; 2023 Aug; 10(1):559. PubMed ID: 37612327 [TBL] [Abstract][Full Text] [Related]
11. Le Petit Prince multilingual naturalistic fMRI corpus. Li J; Bhattasali S; Zhang S; Franzluebbers B; Luh WM; Spreng RN; Brennan JR; Yang Y; Pallier C; Hale J Sci Data; 2022 Aug; 9(1):530. PubMed ID: 36038567 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals. Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629 [No Abstract] [Full Text] [Related]
13. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
14. Sentiments analysis of fMRI using automatically generated stimuli labels under naturalistic paradigm. Mahrukh R; Shakil S; Malik AS Sci Rep; 2023 May; 13(1):7267. PubMed ID: 37142654 [TBL] [Abstract][Full Text] [Related]
15. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662 [TBL] [Abstract][Full Text] [Related]
16. BrainNET: Inference of Brain Network Topology Using Machine Learning. Murugesan GK; Ganesh C; Nalawade S; Davenport EM; Wagner B; Kim WH; Maldjian JA Brain Connect; 2020 Oct; 10(8):422-435. PubMed ID: 33030350 [No Abstract] [Full Text] [Related]
17. A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures. Bondi E; Maggioni E; Brambilla P; Delvecchio G Neurosci Biobehav Rev; 2023 Jan; 144():104972. PubMed ID: 36436736 [TBL] [Abstract][Full Text] [Related]
18. RS-FetMRI: a MATLAB-SPM Based Tool for Pre-processing Fetal Resting-State fMRI Data. Pecco N; Canini M; Mosser KHH; Caglioni M; Scifo P; Castellano A; Cavoretto P; Candiani M; Baldoli C; Falini A; Rosa PAD Neuroinformatics; 2022 Oct; 20(4):1137-1154. PubMed ID: 35834105 [TBL] [Abstract][Full Text] [Related]
19. A method for generating reproducible evidence in fMRI studies. Liou M; Su HR; Lee JD; Aston JA; Tsai AC; Cheng PE Neuroimage; 2006 Jan; 29(2):383-95. PubMed ID: 16226893 [TBL] [Abstract][Full Text] [Related]
20. A topography-based predictive framework for naturalistic viewing fMRI. Li X; Friedrich P; Patil KR; Eickhoff SB; Weis S Neuroimage; 2023 Aug; 277():120245. PubMed ID: 37353099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]