These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36040685)

  • 1. Isolation of Saccharibacillus WB17 strain from wheat bran phyllosphere and genomic insight into the cellulolytic and hemicellulolytic complex of the Saccharibacillus genus.
    Besaury L; Bocquart M; Rémond C
    Braz J Microbiol; 2022 Dec; 53(4):1829-1842. PubMed ID: 36040685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds.
    Jiang L; Lim CJ; Kim SG; Jeong JC; Kim CY; Kim DH; Kim SW; Lee J
    J Microbiol; 2020 Jan; 58(1):24-29. PubMed ID: 31768939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharibacillus deserti sp. nov., isolated from desert soil.
    Sun JQ; Wang XY; Wang LJ; Xu L; Liu M; Wu XL
    Int J Syst Evol Microbiol; 2016 Feb; 66(2):623-627. PubMed ID: 26559492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharibacillus endophyticus sp. nov., an endophyte of cotton.
    Kämpfer P; Busse HJ; Kleinhagauer T; McInroy JA; Glaeser SP
    Int J Syst Evol Microbiol; 2016 Dec; 66(12):5134-5139. PubMed ID: 27613514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharibacillus qingshengii sp. nov., isolated from a lead-cadmium tailing.
    Han H; Gao S; Wang Q; He LY; Sheng XF
    Int J Syst Evol Microbiol; 2016 Nov; 66(11):4645-4649. PubMed ID: 27514529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphasic characterization of and genomic insights into a haloalkali-tolerant Saccharibacillus alkalitolerans sp. nov., that produces three cellulase isozymes and several antimicrobial compounds.
    Darji H; Verma N; Lugani Y; Mehrotra P; Sindhu DK; Vemuluri VR
    Antonie Van Leeuwenhoek; 2021 Jul; 114(7):1043-1057. PubMed ID: 33913068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth.
    Rakotoarivonina H; Hermant B; Monthe N; Rémond C
    Microb Cell Fact; 2012 Dec; 11():159. PubMed ID: 23241174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermotolerant hemicellulolytic and cellulolytic enzymes from Eupenicillium parvum 4-14 display high efficiency upon release of ferulic acid from wheat bran.
    Long L; Ding D; Han Z; Zhao H; Lin Q; Ding S
    J Appl Microbiol; 2016 Aug; 121(2):422-34. PubMed ID: 27171788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culturable and metagenomic approaches of wheat bran and wheat straw phyllosphere's highlight new lignocellulolytic microorganisms.
    Besaury L; Rémond C
    Lett Appl Microbiol; 2022 Jun; 74(6):840-850. PubMed ID: 35158407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft Genome Sequence of
    Besaury L; Remond C
    Microbiol Resour Announc; 2020 Feb; 9(7):. PubMed ID: 32054704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and production study of microbial xylanase producers from Brazilian Cerrado.
    Alves-Prado HF; Pavezzi FC; Leite RS; de Oliveira VM; Sette LD; Dasilva R
    Appl Biochem Biotechnol; 2010 May; 161(1-8):333-46. PubMed ID: 19898784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens.
    Sun X; Liu Z; Qu Y; Li X
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):119-28. PubMed ID: 18421592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an
    Detain J; Rémond C; Rodrigues CM; Harakat D; Besaury L
    Curr Res Microb Sci; 2022; 3():100108. PubMed ID: 35243445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium.
    Vu V; Farkas C; Riyad O; Bujna E; Kilin A; Sipiczki G; Sharma M; Usmani Z; Gupta VK; Nguyen QD
    Bioresour Technol; 2022 Jan; 343():126092. PubMed ID: 34634465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost.
    Sakai M; Deguchi D; Hosoda A; Kawauchi T; Ikenaga M
    Int J Syst Evol Microbiol; 2015 Feb; 65(Pt 2):570-577. PubMed ID: 25404482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation.
    Leite RS; Bocchini DA; Martins Eda S; Silva D; Gomes E; Da Silva R
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):281-8. PubMed ID: 18478395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharibacillus kuerlensis sp. nov., isolated from a desert soil.
    Yang SY; Liu H; Liu R; Zhang KY; Lai R
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):953-7. PubMed ID: 19406774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretomic insight into the biomass hydrolysis potential of the phytopathogenic fungus Chrysoporthe cubensis.
    Tavares MP; Morgan T; Gomes RF; Rodrigues MQRB; Castro-Borges W; de Rezende ST; de Oliveira Mendes TA; Guimarães VM
    J Proteomics; 2021 Mar; 236():104121. PubMed ID: 33540065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics and cellulolytic, hemicellulolytic, and amylolytic potential of
    Heng S; Sutheeworapong S; Champreda V; Uke A; Kosugi A; Pason P; Waeonukul R; Ceballos RM; Ratanakhanokchai K; Tachaapaikoon C
    PeerJ; 2022; 10():e14211. PubMed ID: 36281362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of hemicellulases from thermophilic fungi.
    Maijala P; Kango N; Szijarto N; Viikari L
    Antonie Van Leeuwenhoek; 2012 May; 101(4):905-17. PubMed ID: 22371150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.