These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36040869)

  • 1. Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2210492119. PubMed ID: 36040869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    J Biol Chem; 2023 Jan; 299(1):102776. PubMed ID: 36496075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase.
    Kim TH; Payliss BJ; Nosella ML; Lee ITW; Toyama Y; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation.
    Kim TH; Tsang B; Vernon RM; Sonenberg N; Kay LE; Forman-Kay JD
    Science; 2019 Aug; 365(6455):825-829. PubMed ID: 31439799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical considerations for the measurement of near-surface electrostatics based on solvent paramagnetic relaxation enhancements.
    Kaushik Rangadurai A; Toyama Y; Kay LE
    J Magn Reson; 2023 Apr; 349():107400. PubMed ID: 36796143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation.
    Brady JP; Farber PJ; Sekhar A; Lin YH; Huang R; Bah A; Nott TJ; Chan HS; Baldwin AJ; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8194-E8203. PubMed ID: 28894006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Separation Modulates the Thermodynamics and Kinetics of RNA Hybridization.
    Rangadurai AK; Ruetz L; Ahmed R; Lo K; Tollinger M; Forman-Kay JD; Kreutz C; Kay LE
    J Am Chem Soc; 2024 Jul; 146(29):19686-19689. PubMed ID: 38991204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP regulates RNA-driven cold inducible RNA binding protein phase separation.
    Zhou Q; Usluer S; Zhang F; Lenard AJ; Bourgeois BMR; Madl T
    Protein Sci; 2021 Jul; 30(7):1438-1453. PubMed ID: 33991007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1.
    Wong LE; Kim TH; Muhandiram DR; Forman-Kay JD; Kay LE
    J Am Chem Soc; 2020 Feb; 142(5):2471-2489. PubMed ID: 31898464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
    Paloni M; Bailly R; Ciandrini L; Barducci A
    J Phys Chem B; 2020 Oct; 124(41):9009-9016. PubMed ID: 32936641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of
    Toyama Y; Rangadurai AK; Kay LE
    J Biomol NMR; 2022 Aug; 76(4):137-152. PubMed ID: 36018482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-Patterned Disordered Peptides Tune Intracellular Phase Separation in Bacteria.
    Liao J; Yeong V; Obermeyer AC
    ACS Synth Biol; 2024 Feb; 13(2):598-612. PubMed ID: 38308651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.