These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36040918)

  • 1. An evolutionary algorithm based on approximation method and related techniques for solving bilevel programming problems.
    Liu Y; Li H; Chen H; Ma M
    PLoS One; 2022; 17(8):e0273564. PubMed ID: 36040918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary algorithm using surrogate models for solving bilevel multiobjective programming problems.
    Liu Y; Li H; Li H
    PLoS One; 2020; 15(12):e0243926. PubMed ID: 33332433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.
    Deb K; Sinha A
    Evol Comput; 2010; 18(3):403-49. PubMed ID: 20560758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
    Islam MM; Singh HK; Ray T; Sinha A
    Evol Comput; 2017; 25(4):607-642. PubMed ID: 27819480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recurrent neural network for solving bilevel linear programming problem.
    He X; Li C; Huang T; Li C; Huang J
    IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):824-30. PubMed ID: 24807959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach based on preference-based index for interval bilevel linear programming problem.
    Ren A; Wang Y; Xue X
    J Inequal Appl; 2017; 2017(1):112. PubMed ID: 28579701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test problem construction for single-objective bilevel optimization.
    Sinha A; Malo P; Deb K
    Evol Comput; 2014; 22(3):439-77. PubMed ID: 24364674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Artificial Neural Networks Based on Scalarization Method for a Class of Bilevel Biobjective Programming Problem.
    Zhang T; Chen Z; Liu J; Li X
    Comput Intell Neurosci; 2017; 2017():1853131. PubMed ID: 29312446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network for solving convex quadratic bilevel programming problems.
    He X; Li C; Huang T; Li C
    Neural Netw; 2014 Mar; 51():17-25. PubMed ID: 24333480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Opposition-Based Evolutionary Algorithm for Many-Objective Optimization with Adaptive Clustering Mechanism.
    Wang WL; Li W; Wang YL
    Comput Intell Neurosci; 2019; 2019():5126239. PubMed ID: 31191632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving Bilevel Optimization Problems Using Kriging Approximations.
    Sinha A; Shaikh V
    IEEE Trans Cybern; 2022 Oct; 52(10):10639-10654. PubMed ID: 33750725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem.
    Fajemisin AO; Climent L; Prestwich SD
    OR Spectr; 2021; 43(3):665-692. PubMed ID: 34776568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution by adapting surrogates.
    Le MN; Ong YS; Menzel S; Jin Y; Sendhoff B
    Evol Comput; 2013; 21(2):313-40. PubMed ID: 22564044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.
    Liu D; Li H; Wang D
    IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1323-34. PubMed ID: 25751878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem.
    Pourhassan M; Neumann F
    Evol Comput; 2019; 27(3):525-558. PubMed ID: 29932364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bilevel Programming Approach for Optimizing Multi-Satellite Collaborative Mission Planning.
    Wang Y; Liu D
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Objectivising Combinatorial Optimisation Problems by Means of Elementary Landscape Decompositions.
    Ceberio J; Calvo B; Mendiburu A; Lozano JA
    Evol Comput; 2019; 27(2):291-311. PubMed ID: 29446983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global optimization method for nonlinear bilevel programming problems.
    Amouzegar MA
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):771-7. PubMed ID: 18252356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary algorithms and a fractal inverse problem.
    Nettleton DJ; Garigliano R
    Biosystems; 1994; 33(3):221-31. PubMed ID: 7888613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evolutionary algorithm for large traveling salesman problems.
    Tsai HK; Yang JM; Tsai YF; Kao CY
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1718-29. PubMed ID: 15462439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.