These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36040922)

  • 1. Citizen science and expert opinion working together to understand the impacts of climate change.
    Garcia-Rojas MI; Keatley MR; Roslan N
    PLoS One; 2022; 17(8):e0273822. PubMed ID: 36040922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners.
    Zettlemoyer MA; Renaldi K; Muzyka MD; Lau JA
    Am J Bot; 2021 Jun; 108(6):958-970. PubMed ID: 34133754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.
    Gonsamo A; Chen JM; Wu C
    Sci Rep; 2013; 3():2239. PubMed ID: 23867863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenological advance in the South African Namaqualand Daisy First and Peak Bloom: 1935-2018.
    Snyman PL; Fitchett JM
    Int J Biometeorol; 2022 Apr; 66(4):699-717. PubMed ID: 34994844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bee phenology is predicted by climatic variation and functional traits.
    Stemkovski M; Pearse WD; Griffin SR; Pardee GL; Gibbs J; Griswold T; Neff JL; Oram R; Rightmyer MG; Sheffield CS; Wright K; Inouye BD; Inouye DW; Irwin RE
    Ecol Lett; 2020 Nov; 23(11):1589-1598. PubMed ID: 32812695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flowering phenological changes in relation to climate change in Hungary.
    Szabó B; Vincze E; Czúcz B
    Int J Biometeorol; 2016 Sep; 60(9):1347-56. PubMed ID: 26768142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.
    Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA
    Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal effects of climate change on the geographical distribution and flowering phenology of hummingbird-pollinated plants.
    Correa-Lima APA; Varassin IG; Barve N; Zwiener VP
    Ann Bot; 2019 Oct; 124(3):389-398. PubMed ID: 31310652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate, urbanization, and species traits interactively drive flowering duration.
    Li D; Barve N; Brenskelle L; Earl K; Barve V; Belitz MW; Doby J; Hantak MM; Oswald JA; Stucky BJ; Walters M; Guralnick RP
    Glob Chang Biol; 2021 Feb; 27(4):892-903. PubMed ID: 33249694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spring understory herbs flower later in intensively managed forests.
    Willems FM; Scheepens JF; Ammer C; Block S; Bucharova A; Schall P; Sehrt M; Bossdorf O
    Ecol Appl; 2021 Jul; 31(5):e02332. PubMed ID: 33765327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling of bird migration from the changing phenology of spring green-up.
    Robertson EP; La Sorte FA; Mays JD; Taillie PJ; Robinson OJ; Ansley RJ; O'Connell TJ; Davis CA; Loss SR
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2308433121. PubMed ID: 38437528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.