BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36040993)

  • 1. Predicting Emerging Themes in Rapidly Expanding COVID-19 Literature With Unsupervised Word Embeddings and Machine Learning: Evidence-Based Study.
    Pal R; Chopra H; Awasthi R; Bandhey H; Nagori A; Sethi T
    J Med Internet Res; 2022 Nov; 24(11):e34067. PubMed ID: 36040993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing co-occurrence network embeddings to assist association extraction for COVID-19 and other coronavirus infectious diseases.
    Oniani D; Jiang G; Liu H; Shen F
    J Am Med Inform Assoc; 2020 Aug; 27(8):1259-1267. PubMed ID: 32458963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications.
    Alsuhaibani M; Bollegala D
    Comput Math Methods Med; 2021; 2021():9761163. PubMed ID: 34824601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications.
    Mower J; Subramanian D; Cohen T
    J Am Med Inform Assoc; 2018 Oct; 25(10):1339-1350. PubMed ID: 30010902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised word embeddings capture latent knowledge from materials science literature.
    Tshitoyan V; Dagdelen J; Weston L; Dunn A; Rong Z; Kononova O; Persson KA; Ceder G; Jain A
    Nature; 2019 Jul; 571(7763):95-98. PubMed ID: 31270483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel framework for biomedical entity sense induction.
    Lossio-Ventura JA; Bian J; Jonquet C; Roche M; Teisseire M
    J Biomed Inform; 2018 Aug; 84():31-41. PubMed ID: 29935347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognizing software names in biomedical literature using machine learning.
    Wei Q; Zhang Y; Amith M; Lin R; Lapeyrolerie J; Tao C; Xu H
    Health Informatics J; 2020 Mar; 26(1):21-33. PubMed ID: 31566474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of General and Specific Word Embeddings for Classifying Translational Stages of Research.
    Major V; Surkis A; Aphinyanaphongs Y
    AMIA Annu Symp Proc; 2018; 2018():1405-1414. PubMed ID: 30815185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting mortality in critically ill patients with diabetes using machine learning and clinical notes.
    Ye J; Yao L; Shen J; Janarthanam R; Luo Y
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):295. PubMed ID: 33380338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation.
    Dasgupta S; Jayagopal A; Jun Hong AL; Mariappan R; Rajan V
    JMIR Med Inform; 2021 Oct; 9(10):e32730. PubMed ID: 34694230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semantic projection recovers rich human knowledge of multiple object features from word embeddings.
    Grand G; Blank IA; Pereira F; Fedorenko E
    Nat Hum Behav; 2022 Jul; 6(7):975-987. PubMed ID: 35422527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised and self-supervised deep learning approaches for biomedical text mining.
    Nadif M; Role F
    Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.