BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36041261)

  • 41. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells.
    Lim A; Kumara NT; Tan AL; Mirza AH; Chandrakanthi RL; Petra MI; Ming LC; Senadeera GK; Ekanayake P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():596-602. PubMed ID: 25541396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BaSnO3 perovskite nanoparticles for high efficiency dye-sensitized solar cells.
    Kim DW; Shin SS; Lee S; Cho IS; Kim DH; Lee CW; Jung HS; Hong KS
    ChemSusChem; 2013 Mar; 6(3):449-54. PubMed ID: 23417972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell.
    Ghann W; Kang H; Sheikh T; Yadav S; Chavez-Gil T; Nesbitt F; Uddin J
    Sci Rep; 2017 Jan; 7():41470. PubMed ID: 28128369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel thiazolo[5,4-d]thiazole-based organic dyes for quasi-solid-state dye-sensitized solar cells.
    Zhang W; Feng Q; Wang ZS; Zhou G
    Chem Asian J; 2013 May; 8(5):939-46. PubMed ID: 23420544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic algorithm-assisted optimization of nanoporous TiO₂ for low-temperature processable photoanodes of dye-sensitized solar cells.
    Kim S; Sohn KS; Pyo M
    ACS Comb Sci; 2011 Mar; 13(2):101-6. PubMed ID: 21207976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Open-circuit voltage enhancement on the basis of polymer gel electrolyte for a highly stable dye-sensitized solar cell.
    Wu C; Jia L; Guo S; Han S; Chi B; Pu J; Jian L
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7886-92. PubMed ID: 23899421
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode.
    Lin WJ; Hsu CT; Tsai YC
    J Colloid Interface Sci; 2011 Jun; 358(2):562-6. PubMed ID: 21463866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells.
    Dai H; Zhou Y; Chen L; Guo B; Li A; Liu J; Yu T; Zou Z
    Nanoscale; 2013 Jun; 5(11):5102-8. PubMed ID: 23644717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode.
    Chen X; Tang Y; Liu W
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28771163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of central transition metals and electron-donating substituent on the performances of dye/TiO
    Abdel Aal S; Awadh D
    J Mol Graph Model; 2023 Sep; 123():108525. PubMed ID: 37229869
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays.
    Jen HP; Lin MH; Li LL; Wu HP; Huang WK; Cheng PJ; Diau EW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10098-104. PubMed ID: 24050628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cells by Band Edge Shift of TiO
    Sung HK; Lee Y; Kim WH; Lee SJ; Sung SJ; Kim DH; Han YS
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32224956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.
    Khalili M; Abedi M; Amoli HS; Mozaffari SA
    Carbohydr Polym; 2017 Nov; 175():1-6. PubMed ID: 28917844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental optical properties explained by density functional theory of the natural red algae for dye-sensitized solar cells application.
    Anoua R; Touhtouh S; El Jouad M; Hajjaji A; Bakasse M; Sahraoui B; Płóciennik P; Zawadzka A
    Environ Sci Pollut Res Int; 2024 May; 31(23):33651-33662. PubMed ID: 38689042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-dominant effect of selected natural dye sensitizers in DSSC performance.
    Lim A; Ekanayake P; Lim LBL; Bandara JMRS
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Oct; 167():26-31. PubMed ID: 27236204
    [No Abstract]   [Full Text] [Related]  

  • 56. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.
    Park JT; Ahn SH; Roh DK; Lee CS; Kim JH
    ChemSusChem; 2014 Jul; 7(7):2037-47. PubMed ID: 24678065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers.
    Shanmugam V; Manoharan S; Anandan S; Murugan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():35-40. PubMed ID: 23261702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A combined spectroscopic and TDDFT study of natural dyes extracted from fruit peels of Citrus reticulata and Musa acuminata for dye-sensitized solar cells.
    Prima EC; Hidayat NN; Yuliarto B; Suyatman ; Dipojono HK
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():112-125. PubMed ID: 27497289
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of Chameleonic Change of Red Cabbage Depending on Broad pH Range for Dye-Sensitized Solar Cells.
    Park KH; Kim TY; Ko HS; Han EM; Lee SH; Kim JH; Lee JW
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5840-4. PubMed ID: 26369159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.