These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36041303)

  • 21. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.
    Singh B
    J Hazard Mater; 2009 Aug; 167(1-3):24-37. PubMed ID: 19286315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities.
    Garole DJ; Hossain R; Garole VJ; Sahajwalla V; Nerkar J; Dubal DP
    ChemSusChem; 2020 Jun; 13(12):3079-3100. PubMed ID: 32302053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An innovative hybrid hydrometallurgical approach for precious metals recovery from secondary resources.
    Birloaga I; Vegliò F
    J Environ Manage; 2022 Apr; 307():114567. PubMed ID: 35091239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix.
    Sun DD; Tay JH; Cheong HK; Leung DL; Qian G
    J Hazard Mater; 2001 Oct; 87(1-3):213-23. PubMed ID: 11566411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching.
    Wang J; Wang S; Olayiwola A; Yang N; Liu B; Weigand JJ; Wenzel M; Du H
    J Hazard Mater; 2021 Aug; 416():125849. PubMed ID: 33894437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Options and processes for spent catalyst handling and utilization.
    Marafi M; Stanislaus A
    J Hazard Mater; 2003 Jul; 101(2):123-32. PubMed ID: 12927730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst.
    Rivas-Castillo AM; Guatemala-Cisneros ME; Gómez-Ramírez M; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):533-540. PubMed ID: 30755080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
    Pradhan D; Kim DJ; Roychaudhury G; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):476-82. PubMed ID: 20390893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal recovery from spent hydrodesulfurization catalysts using a combined acid-leaching and electrolysis process.
    Lai YC; Lee WJ; Huang KL; Wu CM
    J Hazard Mater; 2008 Jun; 154(1-3):588-94. PubMed ID: 18060691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovery of tungsten and titanium from spent SCR catalyst by sulfuric acid leaching process.
    Zhao C; Wang C; Wang X; Li H; Chen Y; Wu W
    Waste Manag; 2023 Jan; 155():338-347. PubMed ID: 36417815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sustainable hydrometallurgical strategy for recycling efficiently platinum from spent reforming petroleum catalyst.
    Sadeghi SM; Soares HMVM
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):101410-101423. PubMed ID: 37653195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable treatment of bimetallic (Ag-Pd/α-Al
    Choi S; Ilyas S; Hwang G; Kim H
    J Environ Manage; 2021 Aug; 291():112748. PubMed ID: 33971514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrometallurgical process development to recycle valuable metals from spent SCR deNO
    Jeon JH; Cueva Sola AB; Lee JY; Jyothi RK
    Sci Rep; 2021 Nov; 11(1):22131. PubMed ID: 34764415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.