These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36041384)

  • 1. Estimation of the number density of active cavitation bubbles in a sono-irradiated aqueous solution using a thermodynamic approach.
    Dehane A; Merouani S; Chibani A; Hamdaoui O; Yasui K; Ashokkumar M
    Ultrasonics; 2022 Dec; 126():106824. PubMed ID: 36041384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative technique for determining the number density of acoustic cavitation bubbles in sonochemical reactors.
    Dehane A; Merouani S; Hamdaoui O; Ashokkumar M
    Ultrason Sonochem; 2022 Jan; 82():105872. PubMed ID: 34920350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105498. PubMed ID: 33706197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of methanol mass transport on its conversion for the production of hydrogen and oxygenated reactive species in sono-irradiated aqueous solution.
    Dehane A; Haddad B; Merouani S; Hamdaoui O
    Ultrason Sonochem; 2023 May; 95():106380. PubMed ID: 36990049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble.
    Nazari-Mahroo H; Pasandideh K; Navid HA; Sadighi-Bonabi R
    Ultrasonics; 2020 Mar; 102():106034. PubMed ID: 31670231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles.
    Qin D; Zou Q; Zhong X; Zhang B; Li Z
    Ultrason Sonochem; 2023 May; 95():106375. PubMed ID: 36965309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    Ultrason Sonochem; 2010 Feb; 17(2):460-72. PubMed ID: 19751988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of surface-active solutes on bubble coalescence in the presence of ultrasound.
    Lee J; Kentish SE; Ashokkumar M
    J Phys Chem B; 2005 Mar; 109(11):5095-9. PubMed ID: 16863171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study.
    Lu X; Chen C; Dong K; Li Z; Chen J
    Ultrason Sonochem; 2021 Nov; 79():105760. PubMed ID: 34653916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N
    J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy balance of high-energy stable acoustic cavitation within dual-frequency sonochemical reactor.
    Kerboua K; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105471. PubMed ID: 33571941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.