BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 36041651)

  • 21. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering.
    Kérourédan O; Washio A; Handschin C; Devillard R; Kokabu S; Kitamura C; Tabata Y
    Biomed Mater; 2024 Feb; 19(2):. PubMed ID: 38324892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioprinting Technologies and Bioinks for Vascular Model Establishment.
    Kong Z; Wang X
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioprinted microvasculature: progressing from structure to function.
    Seymour AJ; Westerfield AD; Cornelius VC; Skylar-Scott MA; Heilshorn SC
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35086069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration.
    Phua QH; Han HA; Soh BS
    J Transl Med; 2021 Feb; 19(1):83. PubMed ID: 33602284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Bioprinting for Vascularized Tissue Fabrication.
    Richards D; Jia J; Yost M; Markwald R; Mei Y
    Ann Biomed Eng; 2017 Jan; 45(1):132-147. PubMed ID: 27230253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin.
    De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in 3D printing: vascular network for tissue and organ regeneration.
    Hann SY; Cui H; Esworthy T; Miao S; Zhou X; Lee SJ; Fisher JP; Zhang LG
    Transl Res; 2019 Sep; 211():46-63. PubMed ID: 31004563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues.
    Schott NG; Friend NE; Stegemann JP
    Tissue Eng Part B Rev; 2021 Jun; 27(3):199-214. PubMed ID: 32854589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage.
    Schon BS; Hooper GJ; Woodfield TB
    Ann Biomed Eng; 2017 Jan; 45(1):100-114. PubMed ID: 27073109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs.
    Terpstra ML; Li J; Mensinga A; de Ruijter M; van Rijen MHP; Androulidakis C; Galiotis C; Papantoniou I; Matsusaki M; Malda J; Levato R
    Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35354130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.
    Carlier A; Skvortsov GA; Hafezi F; Ferraris E; Patterson J; Koç B; Van Oosterwyck H
    Biofabrication; 2016 May; 8(2):025009. PubMed ID: 27187017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascularization of three-dimensional engineered tissues for regenerative medicine applications.
    Kim JJ; Hou L; Huang NF
    Acta Biomater; 2016 Sep; 41():17-26. PubMed ID: 27262741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches.
    Choi J; Lee EJ; Jang WB; Kwon SM
    J Funct Biomater; 2023 Oct; 14(10):. PubMed ID: 37888162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.