BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 36041672)

  • 1. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert.
    Li X; Gulati M; Larson AC; Solheim JC; Jain M; Kumar S; Batra SK
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):14-27. PubMed ID: 36041672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy.
    Kawakubo K; Castillo CF; Liss AS
    J Gastroenterol; 2022 Nov; 57(11):819-826. PubMed ID: 36048239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance.
    Heumann T; Azad N
    Cancer Metastasis Rev; 2021 Sep; 40(3):837-862. PubMed ID: 34591243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning Up the Heat on the Pancreatic Tumor Microenvironment by Epigenetic Priming.
    Nephew KP
    Cancer Res; 2020 Nov; 80(21):4610-4611. PubMed ID: 33144295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination immunotherapy for pancreatic cancer: challenges and future considerations.
    Gössling GCL; Zhen DB; Pillarisetty VG; Chiorean EG
    Expert Rev Clin Immunol; 2022 Nov; 18(11):1173-1186. PubMed ID: 36045547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer.
    Zhang M; Huang L; Ding G; Huang H; Cao G; Sun X; Lou N; Wei Q; Shen T; Xu X; Cao L; Yan Q
    J Immunother Cancer; 2020 Feb; 8(1):. PubMed ID: 32051287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles.
    Yu Q; Tang X; Zhao W; Qiu Y; He J; Wan D; Li J; Wang X; He X; Liu Y; Li M; Zhang Z; He Q
    Acta Biomater; 2021 Oct; 133():244-256. PubMed ID: 34000465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape.
    Lu C; Liu Z; Klement JD; Yang D; Merting AD; Poschel D; Albers T; Waller JL; Shi H; Liu K
    J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34326167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel strategies optimize immunotherapy by improving the cytotoxic function of T cells for pancreatic cancer treatment.
    Luo W; Wang J; Chen H; Qiu J; Wang R; Liu Y; Su D; Tao J; Weng G; Ma H; Zhang T
    Cancer Lett; 2023 Nov; 576():216423. PubMed ID: 37778682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models.
    Zhu Y; Knolhoff BL; Meyer MA; Nywening TM; West BL; Luo J; Wang-Gillam A; Goedegebuure SP; Linehan DC; DeNardo DG
    Cancer Res; 2014 Sep; 74(18):5057-69. PubMed ID: 25082815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive pan-cancer analysis of role of GPRASP1, associated with clinical outcomes, immune microenvironment, and immunotherapeutic efficiency in pancreatic cancer.
    Du J; Chen Y; Liu G; Zeng Q; Zhou N; Du D
    Pathol Res Pract; 2023 Mar; 243():154374. PubMed ID: 36801507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors.
    Skelton RA; Javed A; Zheng L; He J
    J Surg Oncol; 2017 Jul; 116(1):55-62. PubMed ID: 28628715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pancreatic Tumor Microenvironment.
    Wang K; He H
    Adv Exp Med Biol; 2020; 1296():243-257. PubMed ID: 34185297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered nanomedicines to overcome resistance of pancreatic cancer to immunotherapy.
    Elzoghby AO; Ferrone CR; Ferrone S; Nasr ML
    Drug Discov Today; 2023 Jan; 28(1):103434. PubMed ID: 36368630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B2M gene expression shapes the immune landscape of lung adenocarcinoma and determines the response to immunotherapy.
    Zhao Y; Cao Y; Chen Y; Wu L; Hang H; Jiang C; Zhou X
    Immunology; 2021 Nov; 164(3):507-523. PubMed ID: 34115389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy.
    Xu S; Wang C; Yang L; Wu J; Li M; Xiao P; Xu Z; Xu Y; Wang K
    Front Immunol; 2023; 14():1199631. PubMed ID: 37313405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilemma and Challenge of Immunotherapy for Pancreatic Cancer.
    Wu J; Cai J
    Dig Dis Sci; 2021 Feb; 66(2):359-368. PubMed ID: 32140943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do novel treatment strategies enhance T cell-mediated Immunity: Opportunities and challenges in pancreatic cancer immunotherapy.
    Luo W; Zheng L; Zhang T
    Int Immunopharmacol; 2021 Jan; 90():107199. PubMed ID: 33246828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.