These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 36042195)
1. Water Structure in the Electrical Double Layer and the Contributions to the Total Interfacial Potential at Different Surface Charge Densities. Rehl B; Ma E; Parshotam S; DeWalt-Kerian EL; Liu T; Geiger FM; Gibbs JM J Am Chem Soc; 2022 Sep; 144(36):16338-16349. PubMed ID: 36042195 [TBL] [Abstract][Full Text] [Related]
2. The water-amorphous silica interface: analysis of the Stern layer and surface conduction. Zhang H; Hassanali AA; Shin YK; Knight C; Singer SJ J Chem Phys; 2011 Jan; 134(2):024705. PubMed ID: 21241144 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of the pH-Dependent Electric Double Layer Structure at the Silica/Water Interface Using Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Wei F; Urashima SH; Nihonyanagi S; Tahara T J Am Chem Soc; 2023 Apr; 145(16):8833-8846. PubMed ID: 37068781 [TBL] [Abstract][Full Text] [Related]
4. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach. Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015 [TBL] [Abstract][Full Text] [Related]
5. Surface Characterization of Colloidal Silica Nanoparticles by Second Harmonic Scattering: Quantifying the Surface Potential and Interfacial Water Order. Marchioro A; Bischoff M; Lütgebaucks C; Biriukov D; Předota M; Roke S J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(33):20393-20404. PubMed ID: 35692558 [TBL] [Abstract][Full Text] [Related]
6. Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. Tuladhar A; Dewan S; Pezzotti S; Brigiano FS; Creazzo F; Gaigeot MP; Borguet E J Am Chem Soc; 2020 Apr; 142(15):6991-7000. PubMed ID: 32233477 [TBL] [Abstract][Full Text] [Related]
7. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions. Baimpos T; Shrestha BR; Raman S; Valtiner M Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312 [TBL] [Abstract][Full Text] [Related]
8. Separating Hofmeister Trends in Stern and Diffuse Layers at a Charged Interface. Tetteh N; Parshotam S; Gibbs JM J Phys Chem Lett; 2024 Sep; 15(35):9113-9121. PubMed ID: 39206708 [TBL] [Abstract][Full Text] [Related]
9. Gate Alignment of Liquid Water Molecules in Electric Double Layer. Li X; Lin X; Li Y; Liu WT Front Chem; 2021; 9():717167. PubMed ID: 34485244 [TBL] [Abstract][Full Text] [Related]
10. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer. Brown MA; Bossa GV; May S Langmuir; 2015 Oct; 31(42):11477-83. PubMed ID: 26474036 [TBL] [Abstract][Full Text] [Related]
11. Water density in the electric double layer at the insulator/electrolyte solution interface. Tikhonov AM J Phys Chem B; 2006 Feb; 110(6):2746-50. PubMed ID: 16471880 [TBL] [Abstract][Full Text] [Related]
12. Double-layer structure of the Pt(111)-aqueous electrolyte interface. Ojha K; Doblhoff-Dier K; Koper MTM Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35042778 [TBL] [Abstract][Full Text] [Related]
13. Specifics about Specific Ion Adsorption from Heterodyne-Detected Second Harmonic Generation. Boamah MD; Ohno PE; Lozier E; Van Ardenne J; Geiger FM J Phys Chem B; 2019 Jul; 123(27):5848-5856. PubMed ID: 31260309 [TBL] [Abstract][Full Text] [Related]
14. Structure of the electrical double layer at the ice-water interface. Daigle H J Chem Phys; 2021 Jun; 154(21):214703. PubMed ID: 34240978 [TBL] [Abstract][Full Text] [Related]
15. Probing interfacial water structure induced by charge reversal and hydrophobicity of silica surface in the presence of divalent heavy metal ions using sum frequency generation spectroscopy. Raji F; Nguyen CV; Nguyen NN; Nguyen TAH; Nguyen AV J Colloid Interface Sci; 2023 Oct; 647():152-162. PubMed ID: 37247479 [TBL] [Abstract][Full Text] [Related]
16. Disentangling Sum-Frequency Generation Spectra of the Water Bending Mode at Charged Aqueous Interfaces. Seki T; Yu CC; Chiang KY; Tan J; Sun S; Ye S; Bonn M; Nagata Y J Phys Chem B; 2021 Jul; 125(25):7060-7067. PubMed ID: 34159786 [TBL] [Abstract][Full Text] [Related]
17. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Brown MA; Goel A; Abbas Z Angew Chem Int Ed Engl; 2016 Mar; 55(11):3790-4. PubMed ID: 26880184 [TBL] [Abstract][Full Text] [Related]
18. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte. Lowe BM; Maekawa Y; Shibuta Y; Sakata T; Skylaris CK; Green NG Phys Chem Chem Phys; 2017 Jan; 19(4):2687-2701. PubMed ID: 27786320 [TBL] [Abstract][Full Text] [Related]
19. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. Nihonyanagi S; Yamaguchi S; Tahara T J Chem Phys; 2009 May; 130(20):204704. PubMed ID: 19485472 [TBL] [Abstract][Full Text] [Related]
20. A molecular dynamics study of the nonlinear spectra and structure of charged (101) quartz/water interfaces. Smirnov KS Phys Chem Chem Phys; 2022 Oct; 24(41):25118-25133. PubMed ID: 36222193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]