BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36042199)

  • 1. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress.
    Griffin WC; McKinzey DR; Klinzing KN; Baratam R; Eliyapura A; Trakselis MA
    Nat Commun; 2022 Aug; 13(1):5090. PubMed ID: 36042199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis.
    Natsume T; Nishimura K; Minocherhomji S; Bhowmick R; Hickson ID; Kanemaki MT
    Genes Dev; 2017 Apr; 31(8):816-829. PubMed ID: 28487407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibiting the MCM8-9 complex selectively sensitizes cancer cells to cisplatin and olaparib.
    Morii I; Iwabuchi Y; Mori S; Suekuni M; Natsume T; Yoshida K; Sugimoto N; Kanemaki MT; Fujita M
    Cancer Sci; 2019 Mar; 110(3):1044-1053. PubMed ID: 30648820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage.
    Huang JW; Acharya A; Taglialatela A; Nambiar TS; Cuella-Martin R; Leuzzi G; Hayward SB; Joseph SA; Brunette GJ; Anand R; Soni RK; Clark NL; Bernstein KA; Cejka P; Ciccia A
    Nat Commun; 2020 Jun; 11(1):2948. PubMed ID: 32528060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of homologous recombination by the HROB-MCM8-MCM9 pathway.
    Hustedt N; Saito Y; Zimmermann M; Álvarez-Quilón A; Setiaputra D; Adam S; McEwan A; Yuan JY; Olivieri M; Zhao Y; Kanemaki MT; Jurisicova A; Durocher D
    Genes Dev; 2019 Oct; 33(19-20):1397-1415. PubMed ID: 31467087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of DNA replication forks: "Breaking up is hard to do".
    Bailey R; Priego Moreno S; Gambus A
    Nucleus; 2015; 6(3):187-96. PubMed ID: 25835602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DCAF14 promotes stalled fork stability to maintain genome integrity.
    Townsend A; Lora G; Engel J; Tirado-Class N; Dungrawala H
    Cell Rep; 2021 Jan; 34(4):108669. PubMed ID: 33503431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The BRCA2 and CDKN1A-interacting protein (BCCIP) stabilizes stalled replication forks and prevents degradation of nascent DNA.
    Singh B; Roy Chowdhury S; Mansuri MS; Pillai SJ; Mehrotra S
    FEBS Lett; 2022 Aug; 596(16):2041-2055. PubMed ID: 35592921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destabilization of the MiniChromosome Maintenance (MCM) complex modulates the cellular response to DNA double strand breaks.
    Drissi R; Chauvin A; McKenna A; Lévesque D; Blais-Brochu S; Jean D; Boisvert FM
    Cell Cycle; 2018; 17(23):2593-2609. PubMed ID: 30516086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability.
    Xu S; Wu X; Wu L; Castillo A; Liu J; Atkinson E; Paul A; Su D; Schlacher K; Komatsu Y; You MJ; Wang B
    Genes Dev; 2017 Jul; 31(14):1469-1482. PubMed ID: 28860160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancient diversification of eukaryotic MCM DNA replication proteins.
    Liu Y; Richards TA; Aves SJ
    BMC Evol Biol; 2009 Mar; 9():60. PubMed ID: 19292915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Checkpoint-Related Function of the MCM Replicative Helicase Is Required to Avert Accumulation of RNA:DNA Hybrids during S-phase and Ensuing DSBs during G2/M.
    Vijayraghavan S; Tsai FL; Schwacha A
    PLoS Genet; 2016 Aug; 12(8):e1006277. PubMed ID: 27556397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAD51 bypasses the CMG helicase to promote replication fork reversal.
    Liu W; Saito Y; Jackson J; Bhowmick R; Kanemaki MT; Vindigni A; Cortez D
    Science; 2023 Apr; 380(6643):382-387. PubMed ID: 37104614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11.
    Schlacher K; Christ N; Siaud N; Egashira A; Wu H; Jasin M
    Cell; 2011 May; 145(4):529-42. PubMed ID: 21565612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of MCM2-7 function.
    Ishimi Y
    Genes Genet Syst; 2018 Nov; 93(4):125-133. PubMed ID: 30369561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.