These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 36042291)
1. SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice. Li ZY; Lu GQ; Lu J; Wang PX; Zhang XL; Zou Y; Liu PQ Acta Pharmacol Sin; 2023 Mar; 44(3):546-560. PubMed ID: 36042291 [TBL] [Abstract][Full Text] [Related]
2. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Peng F; Liao M; Jin W; Liu W; Li Z; Fan Z; Zou L; Chen S; Zhu L; Zhao Q; Zhan G; Ouyang L; Peng C; Han B; Zhang J; Fu L Signal Transduct Target Ther; 2024 May; 9(1):133. PubMed ID: 38744811 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Meng G; Liu J; Liu S; Song Q; Liu L; Xie L; Han Y; Ji Y Br J Pharmacol; 2018 Apr; 175(8):1126-1145. PubMed ID: 28503736 [TBL] [Abstract][Full Text] [Related]
4. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3. Guo R; Liu N; Liu H; Zhang J; Zhang H; Wang Y; Baruscotti M; Zhao L; Wang Y Phytomedicine; 2020 Mar; 68():153171. PubMed ID: 32018211 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Ding YQ; Zhang YH; Lu J; Li B; Yu WJ; Yue ZB; Hu YH; Wang PX; Li JY; Cai SD; Ye JT; Liu PQ Acta Pharmacol Sin; 2021 Sep; 42(9):1422-1436. PubMed ID: 33247214 [TBL] [Abstract][Full Text] [Related]
6. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Pillai VB; Samant S; Sundaresan NR; Raghuraman H; Kim G; Bonner MY; Arbiser JL; Walker DI; Jones DP; Gius D; Gupta MP Nat Commun; 2015 Apr; 6():6656. PubMed ID: 25871545 [TBL] [Abstract][Full Text] [Related]
7. Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. Zhang J; Yu J; Chen Y; Liu L; Xu M; Sun L; Luo H; Wang Y; Meng G Oxid Med Cell Longev; 2018; 2018():9396089. PubMed ID: 30647820 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Guo L; Yin A; Zhang Q; Zhong T; O'Rourke ST; Sun C Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H980-H991. PubMed ID: 28411231 [TBL] [Abstract][Full Text] [Related]
9. SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy. Tang X; Chen XF; Wang NY; Wang XM; Liang ST; Zheng W; Lu YB; Zhao X; Hao DL; Zhang ZQ; Zou MH; Liu DP; Chen HZ Circulation; 2017 Nov; 136(21):2051-2067. PubMed ID: 28947430 [TBL] [Abstract][Full Text] [Related]
10. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. Pillai VB; Sundaresan NR; Kim G; Gupta M; Rajamohan SB; Pillai JB; Samant S; Ravindra PV; Isbatan A; Gupta MP J Biol Chem; 2010 Jan; 285(5):3133-44. PubMed ID: 19940131 [TBL] [Abstract][Full Text] [Related]
11. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Xu M; Xue RQ; Lu Y; Yong SY; Wu Q; Cui YL; Zuo XT; Yu XJ; Zhao M; Zang WJ Cardiovasc Res; 2019 Mar; 115(3):530-545. PubMed ID: 30165480 [TBL] [Abstract][Full Text] [Related]
12. SIRT3 inhibits cardiac hypertrophy by regulating PARP-1 activity. Feng X; Wang Y; Chen W; Xu S; Li L; Geng Y; Shen A; Gao H; Zhang L; Liu S Aging (Albany NY); 2020 Mar; 12(5):4178-4192. PubMed ID: 32139662 [TBL] [Abstract][Full Text] [Related]
13. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. You J; Yue Z; Chen S; Chen Y; Lu X; Zhang X; Shen P; Li J; Han Q; Li Z; Liu P Acta Physiol (Oxf); 2017 May; 220(1):58-71. PubMed ID: 27614093 [TBL] [Abstract][Full Text] [Related]
14. Sirt3 attenuates post-infarction cardiac injury via inhibiting mitochondrial fission and normalization of AMPK-Drp1 pathways. Liu J; Yan W; Zhao X; Jia Q; Wang J; Zhang H; Liu C; He K; Sun Z Cell Signal; 2019 Jan; 53():1-13. PubMed ID: 30219671 [TBL] [Abstract][Full Text] [Related]
15. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. Cai Y; Jiang S; Huang C; Shen A; Zhang X; Yang W; Xiao Y; Gao S; Du R; Zheng G; Yan T; Craig Wan C Phytomedicine; 2023 Jun; 114():154747. PubMed ID: 36931095 [TBL] [Abstract][Full Text] [Related]
16. Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway. Li XX; Zhang P; Yang Y; Wang JJ; Zheng YJ; Tan JL; Liu SY; Yan YM; Zhang YY; Cheng YX; Yang HT Acta Pharmacol Sin; 2022 Mar; 43(3):588-601. PubMed ID: 33967278 [TBL] [Abstract][Full Text] [Related]
17. LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Peng S; Lu XF; Qi YD; Li J; Xu J; Yuan TY; Wu XY; Ding Y; Li WH; Zhou GQ; Wei Y; Li J; Chen SW; Liu SW Oxid Med Cell Longev; 2020; 2020():9815039. PubMed ID: 33014281 [TBL] [Abstract][Full Text] [Related]
18. CTRP9 knockout exaggerates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy through inhibiting the LKB1/AMPK pathway. Zuo A; Zhao X; Li T; Li J; Lei S; Chen J; Xu D; Song C; Liu T; Li C; Guo Y J Cell Mol Med; 2020 Feb; 24(4):2635-2647. PubMed ID: 31930700 [TBL] [Abstract][Full Text] [Related]
19. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Yue Z; Ma Y; You J; Li Z; Ding Y; He P; Lu X; Jiang J; Chen S; Liu P Exp Cell Res; 2016 Oct; 347(2):261-73. PubMed ID: 27423420 [TBL] [Abstract][Full Text] [Related]
20. SIRT3 improved peroxisomes-mitochondria interplay and prevented cardiac hypertrophy via preserving PEX5 expression. Wang M; Ding Y; Hu Y; Li Z; Luo W; Liu P; Li Z Redox Biol; 2023 Jun; 62():102652. PubMed ID: 36906951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]