These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36042848)

  • 1. Nanostructured CuO with a thin g-C
    Bae H; Burungale V; Na W; Rho H; Kang SH; Ryu SW; Ha JS
    RSC Adv; 2021 Apr; 11(26):16083-16089. PubMed ID: 36042848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production.
    Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting.
    Wang Z; Zhang L; Schülli TU; Bai Y; Monny SA; Du A; Wang L
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17604-17609. PubMed ID: 31560406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cu
    Jeong D; Jo W; Jeong J; Kim T; Han S; Son MK; Jung H
    RSC Adv; 2022 Jan; 12(5):2632-2640. PubMed ID: 35425326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu
    Yang Y; Xu D; Wu Q; Diao P
    Sci Rep; 2016 Oct; 6():35158. PubMed ID: 27748380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineered Advanced Materials for Enabling Hydrogen Economy: Functionalized Graphene-Incorporated Cupric Oxide Catalyst for Efficient Solar Hydrogen Production.
    Dalapati GK; Masudy-Panah S; Moakhar RS; Chakrabortty S; Ghosh S; Kushwaha A; Katal R; Chua CS; Xiao G; Tripathy S; Ramakrishna S
    Glob Chall; 2020 Mar; 4(3):1900087. PubMed ID: 32140256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient CuO/Ag
    Mustafa E; Dawi EA; Ibupoto ZH; Ibrahim AMM; Elsukova A; Liu X; Tahira A; Adam RE; Willander M; Nur O
    RSC Adv; 2023 Apr; 13(17):11297-11310. PubMed ID: 37057263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuO/g-C
    Song TS; Li T; Tao R; Huang HF; Xie J
    Sci Total Environ; 2022 Apr; 818():151820. PubMed ID: 34813808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction.
    Jang YJ; Jang JW; Choi SH; Kim JY; Kim JH; Youn DH; Kim WY; Han S; Sung Lee J
    Nanoscale; 2015 May; 7(17):7624-31. PubMed ID: 25784310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the photoelectrochemical water splitting performance of CuO photocathodes using a protective CuBi
    Lam NH; Truong NTN; Le N; Ahn KS; Jo Y; Kim CD; Jung JH
    Sci Rep; 2023 Apr; 13(1):5776. PubMed ID: 37031237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation.
    Kwon J; Cho H; Jung J; Lee H; Hong S; Yeo J; Han S; Ko SH
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29757225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron.
    Cots A; Bonete P; Gómez R
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26348-26356. PubMed ID: 30016591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoelectrochemical water splitting by oxides heterojunction photocathode coupled with Ag.
    Lu X; Liu Z
    Dalton Trans; 2017 Aug; 46(30):9886-9894. PubMed ID: 28715000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trioctylphosphine Oxide (TOPO)-Assisted Facile Fabrication of Phosphorus-Incorporated Nanostructured Carbon Nitride Toward Photoelectrochemical Water Splitting with Enhanced Activity.
    Babu P; Kim H; Park JY; Naik B
    Inorg Chem; 2022 Jan; 61(3):1368-1376. PubMed ID: 34990141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.
    Lim YF; Chua CS; Lee CJ; Chi D
    Phys Chem Chem Phys; 2014 Dec; 16(47):25928-34. PubMed ID: 25355367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CoSe
    Basu M; Zhang ZW; Chen CJ; Lu TH; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26690-26696. PubMed ID: 27635665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting.
    Li Y; Luo K
    RSC Adv; 2019 Mar; 9(15):8350-8354. PubMed ID: 35518699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni-core CuO-shell fibers produced by electrospinning and electroplating as efficient photocathode materials for solar water splitting.
    Jo HS; Kim MW; Joshi B; Samuel E; Yoon H; Swihart MT; Yoon SS
    Nanoscale; 2018 May; 10(20):9720-9728. PubMed ID: 29762621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.