These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36043075)

  • 1. Tunable uniaxial, area, and volume negative thermal expansion in quartz-like and diamond-like metal-organic frameworks.
    Wang L; Chen Y; Miura H; Suzuki K; Wang C
    RSC Adv; 2022 Aug; 12(34):21770-21779. PubMed ID: 36043075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant uniaxial negative thermal expansion in FeZr
    Xu M; Li Q; Song Y; Xu Y; Sanson A; Shi N; Wang N; Sun Q; Wang C; Chen X; Qiao Y; Long F; Liu H; Zhang Q; Venier A; Ren Y; d'Acapito F; Olivi L; De Souza DO; Xing X; Chen J
    Nat Commun; 2023 Jul; 14(1):4439. PubMed ID: 37488108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anharmonic Interaction in Negative Thermal Expansion Material CaTiF
    Wang L; Chen Y; Ni J; Ye F; Wang C
    Inorg Chem; 2022 Oct; 61(43):17378-17386. PubMed ID: 36261410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)
    Wang L; Luo H; Deng S; Sun Y; Wang C
    Inorg Chem; 2017 Dec; 56(24):15101-15109. PubMed ID: 29189011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring negative thermal expansion materials with bulk framework structures and their relevant scaling relationships through multi-step machine learning.
    Cai Y; Wang C; Yuan H; Guo Y; Cho JH; Xing X; Jia Y
    Mater Horiz; 2024 Jun; 11(12):2914-2925. PubMed ID: 38567484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large and tunable negative thermal expansion induced by a synergistic effect in M
    Wang C; Chang D; Gao Q; Liu C; Wang Q; Huang X; Jia Y
    Phys Chem Chem Phys; 2020 Sep; 22(33):18655-18662. PubMed ID: 32794544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the Relationship between Negative Thermal Expansion and Structure Flexibility: The Case of Zn(CN)
    Wang J; Gao Q; Sanson A; Sun Q; Liang E
    Inorg Chem; 2022 Aug; 61(34):13239-13243. PubMed ID: 35972905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure enhanced negative thermal expansion in 2H CuScO
    Chang D; Tang C; Hu Q; Wang C; Jia Y
    Phys Chem Chem Phys; 2022 Jul; 24(27):16622-16627. PubMed ID: 35766117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative thermal expansion in 2H CuScO
    Chang D; Yu W; Sun Q; Jia Y
    Phys Chem Chem Phys; 2017 Jan; 19(3):2067-2072. PubMed ID: 28044172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphenyl tetracarboxylic acid-based metal-organic frameworks: a case of topology-dependent thermal expansion.
    Liu Z; Xing C; Wu S; Ma M; Tian J
    Mater Horiz; 2024 Jul; 11(14):3345-3351. PubMed ID: 38683199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D negative thermal expansion in orthorhombic MIL-68(In).
    Liu Z; Li Q; Zhu H; Lin K; Deng J; Chen J; Xing X
    Chem Commun (Camb); 2018 May; 54(45):5712-5715. PubMed ID: 29774355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Property and Negative Thermal Expansion Behavior of Si
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31163710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation.
    Dove MT; Fang H
    Rep Prog Phys; 2016 Jun; 79(6):066503. PubMed ID: 27177210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.
    Chen J; Hu L; Deng J; Xing X
    Chem Soc Rev; 2015 Jun; 44(11):3522-67. PubMed ID: 25864730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Negative Thermal Expansion in Monoclinic Cu
    Mochizuki Y; Nagamatsu K; Koiso H; Isobe T; Nakajima A
    J Phys Chem Lett; 2024 Jan; 15(1):156-164. PubMed ID: 38149933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach.
    Baxter SJ; Schneemann A; Ready AD; Wijeratne P; Wilkinson AP; Burtch NC
    J Am Chem Soc; 2019 Aug; 141(32):12849-12854. PubMed ID: 31319663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14).
    Wu Y; Peterson VK; Luks E; Darwish TA; Kepert CJ
    Angew Chem Int Ed Engl; 2014 May; 53(20):5175-8. PubMed ID: 24692065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)
    Gao Q; Shi N; Sun Q; Sanson A; Milazzo R; Carnera A; Zhu H; Lapidus SH; Ren Y; Huang Q; Chen J; Xing X
    Inorg Chem; 2018 Sep; 57(17):10918-10924. PubMed ID: 30106577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks.
    Chen Z; Stroscio GD; Liu J; Lu Z; Hupp JT; Gagliardi L; Chapman KW
    J Am Chem Soc; 2023 Jan; 145(1):268-276. PubMed ID: 36538759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Analysis of Vibrational Properties of Type II SiGe Alloy Clathrates.
    Xue D; Myles CW
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.