These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36043348)

  • 21. Molecular determinants of the interactions between proteins and ssDNA.
    Mishra G; Levy Y
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5033-8. PubMed ID: 25855635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of Escherichia coli replicative helicase PriA protein with single-stranded DNA.
    Jezewska MJ; Bujalowski W
    Biochemistry; 2000 Aug; 39(34):10454-67. PubMed ID: 10956036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Method to Predict Ion Effects in RNA Folding.
    Sun LZ; Chen SJ
    Methods Mol Biol; 2017; 1632():1-17. PubMed ID: 28730429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studying the recognition mechanism of TcaR and ssDNA using molecular dynamic simulations.
    Fan JR; Zhang HX; Mu YG; Zheng QC
    J Mol Graph Model; 2018 Mar; 80():67-75. PubMed ID: 29324326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-Dependent Three Interaction Site Model for Single- and Double-Stranded DNA.
    Chakraborty D; Hori N; Thirumalai D
    J Chem Theory Comput; 2018 Jul; 14(7):3763-3779. PubMed ID: 29870236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials.
    De Biase PM; Markosyan S; Noskov S
    J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
    Shi YZ; Jin L; Wang FH; Zhu XL; Tan ZJ
    Biophys J; 2015 Dec; 109(12):2654-2665. PubMed ID: 26682822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory of electrostatically regulated binding of T4 gene 32 protein to single- and double-stranded DNA.
    Rouzina I; Pant K; Karpel RL; Williams MC
    Biophys J; 2005 Sep; 89(3):1941-56. PubMed ID: 15994897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions.
    Bosco A; Camunas-Soler J; Ritort F
    Nucleic Acids Res; 2014 Feb; 42(3):2064-74. PubMed ID: 24225314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements.
    Pant K; Karpel RL; Rouzina I; Williams MC
    J Mol Biol; 2005 Jun; 349(2):317-30. PubMed ID: 15890198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt Induced Structural Collapse, Swelling, and Signature of Aggregation of Two ssDNA Strands: Insights from Molecular Dynamics Simulation.
    Sarkar S; Maity A; Sarma Phukon A; Ghosh S; Chakrabarti R
    J Phys Chem B; 2019 Jan; 123(1):47-56. PubMed ID: 30540471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The conformations of locked nucleic acids (LNA).
    Petersen M; Nielsen CB; Nielsen KE; Jensen GA; Bondensgaard K; Singh SK; Rajwanshi VK; Koshkin AA; Dahl BM; Wengel J; Jacobsen JP
    J Mol Recognit; 2000; 13(1):44-53. PubMed ID: 10679896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy.
    Murphy MC; Rasnik I; Cheng W; Lohman TM; Ha T
    Biophys J; 2004 Apr; 86(4):2530-7. PubMed ID: 15041689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Martini Coarse-Grained Force Field: Extension to DNA.
    Uusitalo JJ; Ingólfsson HI; Akhshi P; Tieleman DP; Marrink SJ
    J Chem Theory Comput; 2015 Aug; 11(8):3932-45. PubMed ID: 26574472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate Sequence-Dependent Coarse-Grained Model for Conformational and Elastic Properties of Double-Stranded DNA.
    Assenza S; Pérez R
    J Chem Theory Comput; 2022 May; 18(5):3239-3256. PubMed ID: 35394775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA polymerase X from African swine fever virus: quantitative analysis of the enzyme-ssDNA interactions and the functional structure of the complex.
    Jezewska MJ; Marcinowicz A; Lucius AL; Bujalowski W
    J Mol Biol; 2006 Feb; 356(1):121-41. PubMed ID: 16337650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The hepatitis B virus transactivator protein, HBx, interacts with single-stranded DNA (ssDNA). Biochemical characterizations of the HBx-ssDNA interactions.
    Qadri I; Ferrari ME; Siddiqui A
    J Biol Chem; 1996 Jun; 271(26):15443-50. PubMed ID: 8663128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA structure: what's in charge?
    McConnell KJ; Beveridge DL
    J Mol Biol; 2000 Dec; 304(5):803-20. PubMed ID: 11124028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of the 8-kDa domain of rat DNA polymerase beta with DNA.
    Jezewska MJ; Rajendran S; Bujalowski W
    Biochemistry; 2001 Mar; 40(11):3295-307. PubMed ID: 11258949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic mechanisms of rat polymerase beta-ssDNA interactions. Quantitative fluorescence stopped-flow analysis of the formation of the (Pol beta)(16) and (Pol beta)(5) ssDNA binding mode.
    Jezewska MJ; Rajendran S; Galletto R; Bujalowski W
    J Mol Biol; 2001 Nov; 313(5):977-1002. PubMed ID: 11700054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.