These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36043385)
21. Origami spring-inspired metamaterials and robots: An attempt at fully programmable robotics. Hu F; Wang W; Cheng J; Bao Y Sci Prog; 2020; 103(3):36850420946162. PubMed ID: 32840456 [TBL] [Abstract][Full Text] [Related]
22. Inverse design of Bézier curve-based mechanical metamaterials with programmable negative thermal expansion and negative Poisson's ratio Cho MW; Ko K; Mohammadhosseinzadeh M; Kim JH; Park DY; Shin DS; Park SM Mater Horiz; 2024 Jun; 11(11):2615-2627. PubMed ID: 38712594 [TBL] [Abstract][Full Text] [Related]
23. Phase-transforming mechanical metamaterials with dynamically controllable shape-locking performance. Zhong Y; Tang W; Xu H; Qin K; Yan D; Fan X; Qu Y; Li Z; Jiao Z; Yang H; Zou J Natl Sci Rev; 2023 Sep; 10(9):nwad192. PubMed ID: 37565196 [TBL] [Abstract][Full Text] [Related]
24. Inverted and Programmable Poynting Effects in Metamaterials. Ghorbani A; Dykstra D; Coulais C; Bonn D; van der Linden E; Habibi M Adv Sci (Weinh); 2021 Oct; 8(20):e2102279. PubMed ID: 34402215 [TBL] [Abstract][Full Text] [Related]
32. Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity. Ghaedizadeh A; Shen J; Ren X; Xie YM Materials (Basel); 2016 Jan; 9(1):. PubMed ID: 28787854 [TBL] [Abstract][Full Text] [Related]
33. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion. Guo X; Ni X; Li J; Zhang H; Zhang F; Yu H; Wu J; Bai Y; Lei H; Huang Y; Rogers JA; Zhang Y Adv Mater; 2021 Jan; 33(3):e2004919. PubMed ID: 33289278 [TBL] [Abstract][Full Text] [Related]
34. Digital Mechanical Metamaterial with Programmable Functionality. Lin W; Yan Y; Zhao S; Qin H; Liu Y Adv Mater; 2024 Oct; ():e2406263. PubMed ID: 39363684 [TBL] [Abstract][Full Text] [Related]
35. Unravelling Size-Dependent and Coupled Properties in Mechanical Metamaterials: A Couple-Stress Theory Perspective. Eskandari S; Shahryari B; Akbarzadeh A Adv Sci (Weinh); 2024 Apr; 11(13):e2305113. PubMed ID: 38168542 [TBL] [Abstract][Full Text] [Related]
36. Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami. Feng H; Ma J; Chen Y; You Z Sci Rep; 2018 Jun; 8(1):9522. PubMed ID: 29934606 [TBL] [Abstract][Full Text] [Related]
37. Oligomodal metamaterials with multifunctional mechanics. Bossart A; Dykstra DMJ; van der Laan J; Coulais C Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001603 [TBL] [Abstract][Full Text] [Related]
38. Photoprogrammable Moisture-Responsive Actuation of a Shape Memory Polymer Film. Xue J; Ge Y; Liu Z; Liu Z; Jiang J; Li G ACS Appl Mater Interfaces; 2022 Mar; 14(8):10836-10843. PubMed ID: 35167262 [TBL] [Abstract][Full Text] [Related]
39. 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape. Lei M; Hong W; Zhao Z; Hamel C; Chen M; Lu H; Qi HJ ACS Appl Mater Interfaces; 2019 Jun; 11(25):22768-22776. PubMed ID: 31140776 [TBL] [Abstract][Full Text] [Related]
40. Magneto-Mechanical Bilayer Metamaterial with Global Area-Preserving Density Tunability for Acoustic Wave Regulation. Sim J; Wu S; Dai J; Zhao RR Adv Mater; 2023 Sep; 35(35):e2303541. PubMed ID: 37335806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]