These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36043389)
1. Intrinsic type-II van der Waals heterostructures based on graphdiyne and XSSe (X = Mo, W): a first-principles study. Peng J; Li C; Dong H; Wu F Phys Chem Chem Phys; 2022 Sep; 24(35):21331-21336. PubMed ID: 36043389 [TBL] [Abstract][Full Text] [Related]
2. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH) Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544 [TBL] [Abstract][Full Text] [Related]
3. Geometric, electronic, and optical properties of MoS Zhang YF; Pan J; Du S Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34038884 [TBL] [Abstract][Full Text] [Related]
4. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. You B; Wang X; Zheng Z; Mi W Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350 [TBL] [Abstract][Full Text] [Related]
5. Dicarbon nitride and Janus transition metal chalcogenides van der Waals heterojunctions for photocatalytic water splitting. Yan S; Chen W; Xiong W; Yang L; Luo R; Wang F J Phys Condens Matter; 2022 Nov; 51(1):. PubMed ID: 36317286 [TBL] [Abstract][Full Text] [Related]
6. Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain. Zhang WX; Yin Y; He C Phys Chem Chem Phys; 2020 Nov; 22(45):26231-26240. PubMed ID: 33174552 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS Yang S; Wu M; Wang B; Zhao LD; Huang L; Jiang C; Wei SH ACS Appl Mater Interfaces; 2017 Dec; 9(48):42149-42155. PubMed ID: 29134796 [TBL] [Abstract][Full Text] [Related]
8. Electronic properties of Janus MXY/graphene (M = Mo, W; X ≠ Y = S, Se) van der Waals structures: a first-principles study. Yu S; Wei W; Li F; Huang B; Dai Y Phys Chem Chem Phys; 2020 Nov; 22(44):25675-25684. PubMed ID: 33146159 [TBL] [Abstract][Full Text] [Related]
10. Highly Efficient Van Der Waals Heterojunction on Graphdiyne toward the High-Performance Photodetector. Do DP; Hong C; Bui VQ; Pham TH; Seo S; Do VD; Phan TL; Tran KM; Haldar S; Ahn BW; Lim SC; Yu WJ; Kim SG; Kim JH; Lee H Adv Sci (Weinh); 2023 Sep; 10(25):e2300925. PubMed ID: 37424035 [TBL] [Abstract][Full Text] [Related]
11. Transition-metal dichalcogenides/Mg(OH) Luo Y; Wang S; Ren K; Chou JP; Yu J; Sun Z; Sun M Phys Chem Chem Phys; 2019 Jan; 21(4):1791-1796. PubMed ID: 30624443 [TBL] [Abstract][Full Text] [Related]
12. Dipole controlled Schottky barrier in the blue-phosphorene-phase of GeSe based van der Waals heterostructures. Peng L; Cui Y; Sun L; Du J; Wang S; Zhang S; Huang Y Nanoscale Horiz; 2019 Mar; 4(2):480-489. PubMed ID: 32254101 [TBL] [Abstract][Full Text] [Related]
13. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Idrees M; Din HU; Rehman SU; Shafiq M; Saeed Y; Bui HD; Nguyen CV; Amin B Phys Chem Chem Phys; 2020 May; 22(18):10351-10359. PubMed ID: 32365147 [TBL] [Abstract][Full Text] [Related]
14. Properties at the interface of the pristine CdSe and core-shell CdSe-ZnS quantum dots with ultrathin monolayers of two-dimensional MX Wang X; Liu S; Chen Y; Zheng Y; Li L J Mol Model; 2022 Jul; 28(8):220. PubMed ID: 35831761 [TBL] [Abstract][Full Text] [Related]
15. Band alignment and optical features in Janus-MoSeTe/X(OH) Vo DD; Vu TV; Hieu NV; Hieu NN; Phuc HV; Binh NTT; Phuong LTT; Idrees M; Amin B; Nguyen CV Phys Chem Chem Phys; 2019 Nov; 21(46):25849-25858. PubMed ID: 31735947 [TBL] [Abstract][Full Text] [Related]
16. Vertical 1D/2D Heterojunction Architectures for Self-Powered Photodetection Application: GaN Nanorods Grown on Transition Metal Dichalcogenides. Zheng Y; Cao B; Tang X; Wu Q; Wang W; Li G ACS Nano; 2022 Feb; 16(2):2798-2810. PubMed ID: 35084838 [TBL] [Abstract][Full Text] [Related]
17. Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO Wang Y; Zhang Y; Wang Y; Zeng C; Sun M; Yang D; Cao K; Pan H; Wu Y; Liu H; Yang R ACS Appl Mater Interfaces; 2021 Sep; 13(34):40629-40637. PubMed ID: 34415734 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS Zhang K; Guo Y; Larson DT; Zhu Z; Fang S; Kaxiras E; Kong J; Huang S ACS Nano; 2021 Sep; 15(9):14394-14403. PubMed ID: 34463476 [TBL] [Abstract][Full Text] [Related]
19. Black Phosphorus-IGZO van der Waals Diode with Low-Resistivity Metal Contacts. Dastgeer G; Khan MF; Cha J; Afzal AM; Min KH; Ko BM; Liu H; Hong S; Eom J ACS Appl Mater Interfaces; 2019 Mar; 11(11):10959-10966. PubMed ID: 30807091 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Wafer-Scale Monolayer Pyrenyl Graphdiyne on Ultrathin Hexagonal Boron Nitride for Multibit Optoelectronic Memory. Wang XH; Zhang ZC; Wang JJ; Chen XD; Yao BW; Hou YX; Yu MX; Li Y; Lu TB ACS Appl Mater Interfaces; 2020 Jul; 12(29):33069-33075. PubMed ID: 32589388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]