BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36043392)

  • 1. Robust covalent pyrazine anchors forming highly conductive and polarity-tunable molecular junctions with carbon electrodes.
    Wang Y; Pan H; Lin D; Li S; Wang Y; Sanvito S; Hou S
    Phys Chem Chem Phys; 2022 Sep; 24(35):21337-21347. PubMed ID: 36043392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Molecular Anchoring to Graphene Electrodes.
    Sadeghi H; Sangtarash S; Lambert C
    Nano Lett; 2017 Aug; 17(8):4611-4618. PubMed ID: 28700831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrathiafulvalenes as anchors for building highly conductive and mechanically tunable molecular junctions.
    Zhou Q; Song K; Zhang G; Song X; Lin J; Zang Y; Zhang D; Zhu D
    Nat Commun; 2022 Apr; 13(1):1803. PubMed ID: 35379823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Ag-C Bonding Contacts from Unprotected Terminal Acetylenes for Molecular Junctions.
    Li S; Yu H; Chen X; Gewirth AA; Moore JS; Schroeder CM
    Nano Lett; 2020 Jul; 20(7):5490-5495. PubMed ID: 32511930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the polarity of charge carriers in N-heterocyclic carbene-based single-molecule junctions
    Wang M; Zhang GP
    Phys Chem Chem Phys; 2024 Mar; 26(11):9051-9059. PubMed ID: 38441317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions.
    Li S; Jiang Y; Wang Y; Sanvito S; Hou S
    J Phys Chem Lett; 2021 Aug; 12(31):7596-7604. PubMed ID: 34347489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions.
    Cheng ZL; Skouta R; Vazquez H; Widawsky JR; Schneebeli S; Chen W; Hybertsen MS; Breslow R; Venkataraman L
    Nat Nanotechnol; 2011 May; 6(6):353-7. PubMed ID: 21552252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Conductance of a π-Hybridized Tripodal Anchor while Maintaining Electronic Communication.
    Ohto T; Tashiro A; Seo T; Kawaguchi N; Numai Y; Tokumoto J; Yamaguchi S; Yamada R; Tada H; Aso Y; Ie Y
    Small; 2021 Jan; 17(3):e2006709. PubMed ID: 33338317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Fabrication of Stable Graphene-Molecule-Graphene Single-Molecule Junctions at Room Temperature.
    Sun H; Jiang Z; Xin N; Guo X; Hou S; Liao J
    Chemphyschem; 2018 Sep; 19(17):2258-2265. PubMed ID: 29797388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling Single Molecule Conductance by a Locally Induced Chemical Reaction on Individual Thiophene Units.
    Michnowicz T; Borca B; Pétuya R; Schendel V; Pristl M; Pentegov I; Kraft U; Klauk H; Wahl P; Mutombo P; Jelínek P; Arnau A; Schlickum U; Kern K
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6207-6212. PubMed ID: 31965698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiophene-based Tripodal Anchor Units for Hole Transport in Single-Molecule Junctions with Gold Electrodes.
    Ie Y; Tanaka K; Tashiro A; Lee SK; Testai HR; Yamada R; Tada H; Aso Y
    J Phys Chem Lett; 2015 Sep; 6(18):3754-9. PubMed ID: 26722752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes.
    Wang M; Wang Y; Sanvito S; Hou S
    J Chem Phys; 2017 Aug; 147(5):054702. PubMed ID: 28789544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-molecule-graphene single-molecule junctions to detect electronic reactions at the molecular scale.
    Yang C; Yang C; Guo Y; Feng J; Guo X
    Nat Protoc; 2023 Jun; 18(6):1958-1978. PubMed ID: 37045993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive electron transport on pyridine-linked molecular junctions with narrow monolayer graphene nanoribbon electrodes compared with metal electrodes and graphene electrodes.
    Li J; Li T; Zhou Y; Wu W; Zhang L; Li H
    Phys Chem Chem Phys; 2016 Oct; 18(40):28217-28226. PubMed ID: 27711666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge transport in C
    Leitherer S; Coto PB; Ullmann K; Weber HB; Thoss M
    Nanoscale; 2017 Jun; 9(21):7217-7226. PubMed ID: 28513712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps.
    Xu Q; Scuri G; Mathewson C; Kim P; Nuckolls C; Bouilly D
    Nano Lett; 2017 Sep; 17(9):5335-5341. PubMed ID: 28792226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar aromatic anchors control the electrical conductance of gold|molecule|graphene junctions.
    O'Driscoll LJ; Jay M; Robinson BJ; Sadeghi H; Wang X; Penhale-Jones B; Bryce MR; Lambert CJ
    Nanoscale Adv; 2023 Apr; 5(8):2299-2306. PubMed ID: 37056609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.