These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36043392)

  • 41. Silane and Germane Molecular Electronics.
    Su TA; Li H; Klausen RS; Kim NT; Neupane M; Leighton JL; Steigerwald ML; Venkataraman L; Nuckolls C
    Acc Chem Res; 2017 Apr; 50(4):1088-1095. PubMed ID: 28345881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solvent-molecule interaction induced gating of charge transport through single-molecule junctions.
    Tang Z; Hou S; Wu Q; Tan Z; Zheng J; Li R; Liu J; Yang Y; Sadeghi H; Shi J; Grace I; Lambert CJ; Hong W
    Sci Bull (Beijing); 2020 Jun; 65(11):944-950. PubMed ID: 36747427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single molecule electronic devices with carbon-based materials: status and opportunity.
    Ghasemi S; Moth-Poulsen K
    Nanoscale; 2021 Jan; 13(2):659-671. PubMed ID: 33406181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Quasi-freestanding" graphene-on-single walled carbon nanotube electrode for applications in organic light-emitting diode.
    Liu Y; Jung E; Wang Y; Zheng Y; Park EJ; Cho SM; Loh KP
    Small; 2014 Mar; 10(5):944-9. PubMed ID: 24170390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.
    Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH
    Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular junctions based on aromatic coupling.
    Wu S; González MT; Huber R; Grunder S; Mayor M; Schönenberger C; Calame M
    Nat Nanotechnol; 2008 Sep; 3(9):569-74. PubMed ID: 18772920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings.
    Li Y; Yu X; Zhen Y; Dong H; Hu W
    Phys Chem Chem Phys; 2019 Jul; 21(29):16293-16301. PubMed ID: 31304481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The formation and stability of junctions in single-wall carbon nanotubes.
    Zhang X; Dong J; Gong X; Ding F
    Nanotechnology; 2018 Nov; 29(48):485702. PubMed ID: 30207298
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Negative differential resistance, rectification, tunable peak-current position and switching effects in an alanine-based molecular device.
    Kokabi A; Touski SB; Mamdouh A
    J Med Eng Technol; 2021 Oct; 45(7):505-510. PubMed ID: 34184593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries.
    Zhao MQ; Liu XF; Zhang Q; Tian GL; Huang JQ; Zhu W; Wei F
    ACS Nano; 2012 Dec; 6(12):10759-69. PubMed ID: 23153374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient conducting channels formed by the π-π stacking in single [2,2]paracyclophane molecules.
    Bai M; Liang J; Xie L; Sanvito S; Mao B; Hou S
    J Chem Phys; 2012 Mar; 136(10):104701. PubMed ID: 22423852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions.
    Supur M; Van Dyck C; Bergren AJ; McCreery RL
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6090-6095. PubMed ID: 29400435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 56. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups.
    Li Y; Tu X; Wang H; Sanvito S; Hou S
    J Chem Phys; 2015 Apr; 142(16):164701. PubMed ID: 25933778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Promising anchoring groups for single-molecule conductance measurements.
    Kaliginedi V; Rudnev AV; Moreno-García P; Baghernejad M; Huang C; Hong W; Wandlowski T
    Phys Chem Chem Phys; 2014 Nov; 16(43):23529-39. PubMed ID: 25285778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.
    Liu J; Huang X; Wang F; Hong W
    Acc Chem Res; 2019 Jan; 52(1):151-160. PubMed ID: 30500161
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.
    Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H
    J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of multifunctional spin logic gates based on manganese porphyrin molecules connected to graphene electrodes.
    Zhang W; Zhang GP; Li ZL; Fu XX; Wang CK; Wang M
    Phys Chem Chem Phys; 2022 Jan; 24(3):1849-1859. PubMed ID: 34988568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.