These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Investigation of the substrate range of CYP199A4: modification of the partition between hydroxylation and desaturation activities by substrate and protein engineering. Bell SG; Zhou R; Yang W; Tan AB; Gentleman AS; Wong LL; Zhou W Chemistry; 2012 Dec; 18(52):16677-88. PubMed ID: 23135838 [TBL] [Abstract][Full Text] [Related]
4. Exploring the Factors which Result in Cytochrome P450 Catalyzed Desaturation Versus Hydroxylation. Coleman T; Doherty DZ; Zhang T; Podgorski MN; Qiao R; Lee JHZ; Bruning JB; De Voss JJ; Zhou W; Bell SG Chem Asian J; 2022 Dec; 17(24):e202200986. PubMed ID: 36268769 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the requirements for efficient and selective cytochrome P450 monooxygenase catalysis across different reactions. Podgorski MN; Coleman T; Chao RR; De Voss JJ; Bruning JB; Bell SG J Inorg Biochem; 2020 Feb; 203():110913. PubMed ID: 31759265 [TBL] [Abstract][Full Text] [Related]
6. The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst. Chao RR; Lau IC; Coleman T; Churchman LR; Child SA; Lee JHZ; Bruning JB; De Voss JJ; Bell SG Chemistry; 2021 Oct; 27(59):14765-14777. PubMed ID: 34350662 [TBL] [Abstract][Full Text] [Related]
7. The importance of the benzoic acid carboxylate moiety for substrate recognition by CYP199A4 from Rhodopseudomonas palustris HaA2. Coleman T; Chao RR; De Voss JJ; Bell SG Biochim Biophys Acta; 2016 Jun; 1864(6):667-675. PubMed ID: 26969786 [TBL] [Abstract][Full Text] [Related]
8. To Be, or Not to Be, an Inhibitor: A Comparison of Azole Interactions with and Oxidation by a Cytochrome P450 Enzyme. Podgorski MN; Coleman T; Giang PD; Wang CR; Bruning JB; Bernhardt PV; De Voss JJ; Bell SG Inorg Chem; 2022 Jan; 61(1):236-245. PubMed ID: 34910500 [TBL] [Abstract][Full Text] [Related]
9. Biophysical Techniques for Distinguishing Ligand Binding Modes in Cytochrome P450 Monooxygenases. Podgorski MN; Harbort JS; Coleman T; Stok JE; Yorke JA; Wong LL; Bruning JB; Bernhardt PV; De Voss JJ; Harmer JR; Bell SG Biochemistry; 2020 Mar; 59(9):1038-1050. PubMed ID: 32058707 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of the heme aqua-ligand coordination environment in an engineered peroxygenase cytochrome P450 variant. Podgorski MN; Lee JHZ; Harbort JS; Nguyen GTH; Doherty DZ; Donald WA; Harmer JR; Bruning JB; Bell SG J Inorg Biochem; 2023 Dec; 249():112391. PubMed ID: 37837941 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. Bell SG; Xu F; Forward I; Bartlam M; Rao Z; Wong LL J Mol Biol; 2008 Nov; 383(3):561-74. PubMed ID: 18762195 [TBL] [Abstract][Full Text] [Related]
12. Alteration of the substrate specificity of cytochrome P450 CYP199A2 by site-directed mutagenesis. Furuya T; Shitashima Y; Kino K J Biosci Bioeng; 2015 Jan; 119(1):47-51. PubMed ID: 24982017 [TBL] [Abstract][Full Text] [Related]
13. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Podgorski MN; Keto AB; Coleman T; Bruning JB; De Voss JJ; Krenske EH; Bell SG Chemistry; 2023 Sep; 29(50):e202301371. PubMed ID: 37338048 [TBL] [Abstract][Full Text] [Related]
14. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition. Shoji O; Aiba Y; Watanabe Y Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147 [TBL] [Abstract][Full Text] [Related]
15. Engineering C-C Bond Cleavage Activity into a P450 Monooxygenase Enzyme. Miller JC; Lee JHZ; Mclean MA; Chao RR; Stone ISJ; Pukala TL; Bruning JB; De Voss JJ; Schuler MA; Sligar SG; Bell SG J Am Chem Soc; 2023 Apr; 145(16):9207-9222. PubMed ID: 37042073 [TBL] [Abstract][Full Text] [Related]
16. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions. Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. Jóźwik IK; Kiss FM; Gricman Ł; Abdulmughni A; Brill E; Zapp J; Pleiss J; Bernhardt R; Thunnissen AW FEBS J; 2016 Nov; 283(22):4128-4148. PubMed ID: 27686671 [TBL] [Abstract][Full Text] [Related]
18. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686 [TBL] [Abstract][Full Text] [Related]
19. Investigating the Active Oxidants Involved in Cytochrome P450 Catalyzed Sulfoxidation Reactions. Podgorski MN; Coleman T; Churchman LR; Bruning JB; De Voss JJ; Bell SG Chemistry; 2022 Dec; 28(72):e202202428. PubMed ID: 36169207 [TBL] [Abstract][Full Text] [Related]
20. An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. Graham-Lorence S; Truan G; Peterson JA; Falck JR; Wei S; Helvig C; Capdevila JH J Biol Chem; 1997 Jan; 272(2):1127-35. PubMed ID: 8995412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]