BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36043636)

  • 21. A catalytic antibody programmed for torsional activation of amide bond hydrolysis.
    Aggarwal R; Benedetti F; Berti F; Buchini S; Colombatti A; Dinon F; Galasso V; Norbedo S
    Chemistry; 2003 Jul; 9(13):3132-42. PubMed ID: 12833295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical studies on the hydrolysis mechanism of N-(2-oxo-1,2-dihydro-pyrimidinyl) formamide.
    Wu Y; Xue Y; Xie DQ; Kim CK; Yan GS
    J Phys Chem B; 2007 Mar; 111(9):2357-64. PubMed ID: 17295531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of nanoscopic coordination cages using a flexible tripodal amide containing linker.
    Mukherjee PS; Das N; Stang PJ
    J Org Chem; 2004 May; 69(10):3526-9. PubMed ID: 15132565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases?
    V Komarov I; Yu Ishchenko A; Hovtvianitsa A; Stepanenko V; Kharchenko S; D Bond A; J Kirby A
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30764512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cations bind only weakly to amides in aqueous solutions.
    Okur HI; Kherb J; Cremer PS
    J Am Chem Soc; 2013 Apr; 135(13):5062-7. PubMed ID: 23517474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordination of divalent metal cation to amide group to form adduct ion in FAB mass spectrometry: implication of Zn2+ in enzymatic hydrolysis of amide bond.
    Kobayashi H; Morisaki N; Miyachi H; Hashimoto Y
    Chem Pharm Bull (Tokyo); 2008 May; 56(5):672-6. PubMed ID: 18451556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective Conversion of Unactivated C-N Amide Bond to C-C bond via Steric and Electronic Resonance Destabilization.
    Adebomi V; Wang Y; Sriram M; Raj M
    Org Lett; 2022 Sep; 24(36):6525-6530. PubMed ID: 36067532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and structural analysis of 2-quinuclidonium tetrafluoroborate.
    Tani K; Stoltz BM
    Nature; 2006 Jun; 441(7094):731-4. PubMed ID: 16760973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the reaction mechanisms of the amide hydrolysis in an N-(o-carboxybenzoyl)-L-amino acid.
    Wu Z; Ban F; Boyd RJ
    J Am Chem Soc; 2003 Jun; 125(23):6994-7000. PubMed ID: 12783553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical investigations of the reactivity of verdoheme analogues: opening of the planar macrocycle by amide, dimethyl amide, and hydroxide nucleophiles to form helical biliverdin type complexes.
    Bahrami H; Zahedi M; Safari N
    J Inorg Biochem; 2006 Sep; 100(9):1449-61. PubMed ID: 16781778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The preservation of sarin and
    Dorrat JC; Young RJ; Taylor CGP; Tipping MB; Blok AJ; Turner DR; McKay AI; Ovenden S; Ward MD; Dennison GH; Tuck KL
    Dalton Trans; 2023 Aug; 52(34):11802-11814. PubMed ID: 37272072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concentration-Dependent Self-Assembly of an Unusually Large Hexameric Hydrogen-Bonded Molecular Cage.
    Merget S; Catti L; Zev S; Major DT; Trapp N; Tiefenbacher K
    Chemistry; 2021 Mar; 27(13):4447-4453. PubMed ID: 33346916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride.
    Bhandari P; Mukherjee PS
    Chemistry; 2022 Oct; 28(57):e202201901. PubMed ID: 35776112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Self-Assembled Cage for Wide-Scope Chiral Recognition in Water.
    Wu G; Chen Y; Fang S; Tong L; Shen L; Ge C; Pan Y; Shi X; Li H
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16594-16599. PubMed ID: 34000079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism for different fluorescence response of a coumarin-amide-dipicolylamine linkage to Zn(II) and Cd(II) in water.
    Sumiya S; Shiraishi Y; Hirai T
    J Phys Chem A; 2013 Feb; 117(7):1474-82. PubMed ID: 23343117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Face-driven corner-linked octahedral nanocages: M6L8 cages formed by C3-symmetric triangular facial ligands linked via C4-symmetric square tetratopic Pd(II) ions at truncated octahedron corners.
    Moon D; Kang S; Park J; Lee K; John RP; Won H; Seong GH; Kim YS; Kim GH; Rhee H; Lah MS
    J Am Chem Soc; 2006 Mar; 128(11):3530-1. PubMed ID: 16536521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medium-bridged lactams: a new class of non-planar amides.
    Szostak M; Aubé J
    Org Biomol Chem; 2011 Jan; 9(1):27-35. PubMed ID: 21069232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.
    Sulway SA; Collison D; McDouall JJ; Tuna F; Layfield RA
    Inorg Chem; 2011 Mar; 50(6):2521-6. PubMed ID: 21314147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The reactivity of N-coordinated amides in metallopeptide frameworks: molecular events in metal-induced pathogenic pathways?
    Niklas N; Hampel F; Liehr G; Zahl A; Alsfasser R
    Chemistry; 2001 Dec; 7(23):5135-42. PubMed ID: 11775686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.