BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36043661)

  • 1. Effect of untreated and pretreated sugarcane molasses on growth performance of Haematococcus pluvialis microalgae in inorganic fertilizer and macrophyte extract culture media.
    Sipaúba-Tavares LH; Tedesque MG; Colla LC; Millan RN; Scardoeli-Truzzi B
    Braz J Biol; 2022; 82():e263282. PubMed ID: 36043661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effects of sugarcane molasses as a carbon source for Ankistrodesmus gracilis and Haematococcus pluvialis (Chlorophyceae).
    Sipaúba-Tavares LH; Tedesque MG; Scardoeli-Truzzi B
    Braz J Biol; 2020 Sep; 80(3):594-600. PubMed ID: 31644653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Haematococcus pluvialis Flotow in alternative media.
    Sipaúba-Tavares LH; Berchielli-Morais FA; Scardoeli-Truzzi B
    Braz J Biol; 2015 Nov; 75(4):796-803. PubMed ID: 26675899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of photoautotrophic and mixotrophic cultivation of microalgae Messastrum gracile (Chlorophyceae) in alternative culture media.
    Sipaúba-Tavares LH; Scardoeli-Truzzi B; Fenerick DC; Tedesque MG
    Braz J Biol; 2020; 80(4):914-920. PubMed ID: 31800772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation.
    Zhao Y; Yue C; Geng S; Ning D; Ma T; Yu X
    Bioprocess Biosyst Eng; 2019 Apr; 42(4):593-602. PubMed ID: 30604011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas.
    Choi YY; Joun JM; Lee J; Hong ME; Pham HM; Chang WS; Sim SJ
    Bioresour Technol; 2017 Nov; 244(Pt 2):1235-1244. PubMed ID: 28647321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of some parameters in upscale culture of Haematococcus pluvialis Flotow.
    Sipaúba-Tavares LH; Millan RN; Berchielli-Morais FA
    Braz J Biol; 2013 Aug; 73(3):585-91. PubMed ID: 24212699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Biomass and Astaxanthin Production of
    Li F; Cai M; Lin M; Huang X; Wang J; Ke H; Wang C; Zheng X; Chen D; Yang S
    Mar Drugs; 2020 Jun; 18(7):. PubMed ID: 32610482
    [No Abstract]   [Full Text] [Related]  

  • 9. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis.
    Dalay MC; Imamoglu E; Demirel Z
    J Microbiol Biotechnol; 2007 Mar; 17(3):393-7. PubMed ID: 18050940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation.
    Ding W; Cui J; Zhao Y; Han B; Li T; Zhao P; Xu JW; Yu X
    Bioresour Technol; 2019 Aug; 285():121334. PubMed ID: 30991185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis.
    Sun H; Liu B; Lu X; Cheng KW; Chen F
    Bioresour Technol; 2017 Jun; 233():326-331. PubMed ID: 28285225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalga
    Thepsuthammarat K; Reungsang A; Plangklang P
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquaculture biological waste as culture medium to cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov.
    Sipaúba-Tavares LH; Florêncio T; Scardoeli-Truzzi B
    Braz J Biol; 2018 Aug; 78(3):579-587. PubMed ID: 29166430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas.
    Choi YY; Hong ME; Jin ES; Woo HM; Sim SJ
    Bioresour Technol; 2018 Feb; 249():519-526. PubMed ID: 29078178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of protein production using synthetic brewery wastewater by Haematococcus pluvialis.
    Yap SM; Lan JC; Kee PE; Ng HS; Yim HS
    J Biotechnol; 2022 May; 350():1-10. PubMed ID: 35331728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation of freshwater microalga Scenedesmus sp. using a low-cost inorganic fertilizer for enhanced biomass and lipid yield.
    Nayak M; Thirunavoukkarasu M; Mohanty RC
    J Gen Appl Microbiol; 2016; 62(1):7-13. PubMed ID: 26923125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phycocyanin Production by Aphanothece microscopica Nägeli in Synthetic Medium Supplemented with Sugarcane Vinasse.
    Morais DV; Bastos RG
    Appl Biochem Biotechnol; 2019 Jan; 187(1):129-139. PubMed ID: 29911264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Carotene production from sugarcane molasses by a newly isolated Rhodotorula toruloides L/24-26-1.
    Ochoa-Viñals N; Alonso-Estrada D; Faife-Pérez E; Chen Z; Michelena-Alvarez G; Martínez-Hernández JL; García-Cruz A; Ilina A
    Arch Microbiol; 2024 May; 206(6):245. PubMed ID: 38702537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilevel heuristic LED regime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions.
    Pang N; Fu X; Fernandez JSM; Chen S
    Bioresour Technol; 2019 Sep; 288():121525. PubMed ID: 31174087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp.
    Recht L; Zarka A; Boussiba S
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1495-503. PubMed ID: 22361859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.